
SUCTION FILTERS

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering.

Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly evolving needs of customers and the market.

HYDRAULIC FILTRATION PRODUCTS

1 page INTRODUCTION 2 INDEX 4 COMPANY PROFILE 8 PRODUCT RANGE 11 CONTAMINATION MANAGEMENT

21 FILTER SIZING

			up to	Q _{max}
30	age	SUCTION FILTERS	l/min	gpm
33	STRC & MPAC	Submerged suction filter, with bypass or magnetic filter	1000	264
40	SFEX	In-line filter with plastic bowl	100	26
51	SFMC	Semi-submerged positive head suction filter, low flow rate	160	42

51 SFMC Semi-submerged positive head suction filter, high flow rate
61 SFSC Semi-submerged positive head suction filter, high flow rate
715 CLOGGING INDICATORS

			up to	P _{max}	up to	Q _{max}
(72) F	age	RETURN FILTERS	bar	psi	l/min	gpm
74	RFEX	Return filter, tank mounted filter suitable for all mineral oil and water glycol applications	16	232	260	69
84	MPFX	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
112	MPLX	Tank top semi-immersed filter, standard filter element disassembly	10	145	1800	476
120	MPTX	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
138	MFBX	Bowl assembly	8	116	700	185
147	MPF	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
175	MPT	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
193	MFB	Bowl assembly	8	116	700	185
201	MDH	Heavy industrial applications integrated in the tank - air separation	10	145	500	132
209	MPH	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
233	MPI	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
245	FRI	Tank top semi-immersed filter, easy filter element disassembly, it can be used also as in-line filter	20	290	2500	660
261	RF2	Semi-immersed under-head filter, easy filter element disassembly	20	290	615	162
268	ACCESSORIES					
716	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q_{max}
(270) F	oage	RETURN / SUCTION FILTERS	bar	psi	l/min	gpm
272	MRSX	Unique TANK TOP filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	10	145	250	66
287	LMP 124 MULTIPORT	Unique IN-LINE filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	80	1160	120	32
718	CLOGGING INDICATORS					

			up t	:o P _{max}	up to	Q _{max}
294) p	age	SPIN-ON FILTERS	bar	psi	l/min	gpm
297	MPS	Low pressure filter, available with single cartridge (CS) for in-line or flange mounting or with two cartridge on the same axis on the opposite sides	12	174	365	96
313	MSH	In-line low and medium pressure filter available with single cartridge (CH)	35	508	195	52
720	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q _{max}
(320 P	age	LOW & MEDIUM PRESSURE FILTERS	bar	psi	l/min	gpm
322	LFEX	In-line filter with plastic bowl	16	232	300	79
333	LMP 110	In-line low & medium pressure filter, low to medium flow rate	80	1160	165	44
341	LMP 112 - 123 MULTIPORT	In-line filter with Multiport design for multiple choice connection	80	1160	175	46
357	LMP 210 - 211	In-line low & medium pressure filter, low flow rate	60	870	365	96
367	LPH 630	Off-line low pressure filter	10	145	1600	352
375	LMP 400 - 401	In-line low & medium pressure filter, high flow rate	60	870	780	206
383	LMP 430 - 431	In-line low & medium pressure filter, high flow rate	60	870	780	206
391	LMP 950 - 951	In-line filter, available with 2 and up to 6 different heads	30	435	2400	634
399	LMP 952 - 953 - 954	In-line low pressure filter specifically designed to be mounted in series	25	363	4500	1189
411	LMD 211	In-line duplex medium pressure filter	60	870	200	53
419	LMD 400 - 401 & 431	In-line duplex low pressure filter	16	232	600	159
435	LMD 951	In-line duplex filter, available with 2 up to 6 different heads	16	232	1200	317
443		Filter elements designed according to DIN 24550				
445	LDP - LDD	In-line and duplex medium pressure filter	60	870	360	95
455	LMP 900 - 901	In-line low pressure filter	30	435	2000	528
463	LMP 902 - 903	In-line filter specifically designed to be mounted in series	20	290	3000	793
472	ACCESSORIES				1	
722	CLOGGING INDICATORS					
			up to	P _{max}	up to	Q _{max}
474 p	age	HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
476	FMMX	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
485	FMM	Typical high pressure filter for mobile applications, low flow rate	420	6092	300	79
495	FHA	Filter optimized for use in high pressure operating systems, low flow rate	560	8122	150	40
503	FMP 039	Filter high pressure, low flow rate applications	110	1595	80	21
511	FMP	Filter high pressure, high flow rate applications	320	4641	500	132
523	FHP	Typical high pressure filter for mobile applications, high flow rate	420	6092	630	166
543	FHM	High pressure filter with intermediate manifold construction	320	4641	400	106
561	FHB	High pressure for block mounting	320	4641	485	128
575	FHF	In-line manifold top mounting according to SAE J2066	350	5076	550	145
585	FHD	In-line duplex high pressure filter	350	5076	250	66
599	HPB	Pressure filter kits for integration in control manifolds	420	6092	300	79
723	CLOGGING INDICATORS					'
			up to	P _{max}	up to	Q _{max}
608	page	STAINLESS STEEL HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
611	FZP	In-line pressure filter with threaded mount	420	6092	160	42
621	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	80	21
631	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
639	FZM	Manifold top mounting	320	4641	70	18
647	FZB	Manifold side mounting	320	4641	70	18
655	FZD	Duplex pressure filter for continuous operation requirements	350	5076	60	16
724	CLOGGING INDICATORS					
			up to	P _{max}	up to	Q _{max}
(666) P	page	FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	bar	psi	I/min	gpm
668	FMMX	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
677	FZP	In-line pressure filter with threaded mount	420	6092	160	42
687	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	80	21
697	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
725	CLOGGING INDICATORS					
705	2000	OLOCCINIC INIDIO ATORS				
(705) p	age	CLOGGING INDICATORS				

705 page

710 QUICK REFERENCE GUIDE

714 DESIGNATION AND ORDERING CODES

726 TECHNICAL DATA

Our work is based on a skillful interaction between advanced technology and fine workmanship, customizing products according to specific market requests, focusing strongly on innovation and quality, and following every step in the manufacturing of both standard and special products, fully respecting customer expectations. MARKET **EADER** Our customer-oriented philosophy, which enables us to satisfy all customer requests rapidly and with personalized products, makes us a dynamic and flexible enterprise. The possibility of constantly controlling and monitoring the entire to guarantee the production process is essential to allow us quality of our products.

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

The Group boasts **9 business branches**

TECHNOLOGY

NUMBER OF STREET

SUCTION **FILTERS**

Mounting:

- Tank immersed
- In-Line
- In tank with shut off valve
- In tank with flooded suction

RETURN FILTERS

Mounting:

- In-Line
- Tank top
- In single
- and duplex designs

RETURN / SUCTION **FILTERS**

Mounting:

- In-Line
- Tank top

SPIN-ON **FILTERS**

Mounting:

- In-Line
- Tank top

LOW & MEDIUM PRESSURE **FILTERS**

Mounting:

- In-Line
- Parallel manifold version
- In single and duplex designs

HIGH PRESSURE **FILTERS**

Mounting: - In-Line

- Manifold
- In single
- and duplex designs

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure, ATEX filters) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Mounting:

- In-Line
- Manifold
- In single and duplex designs

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

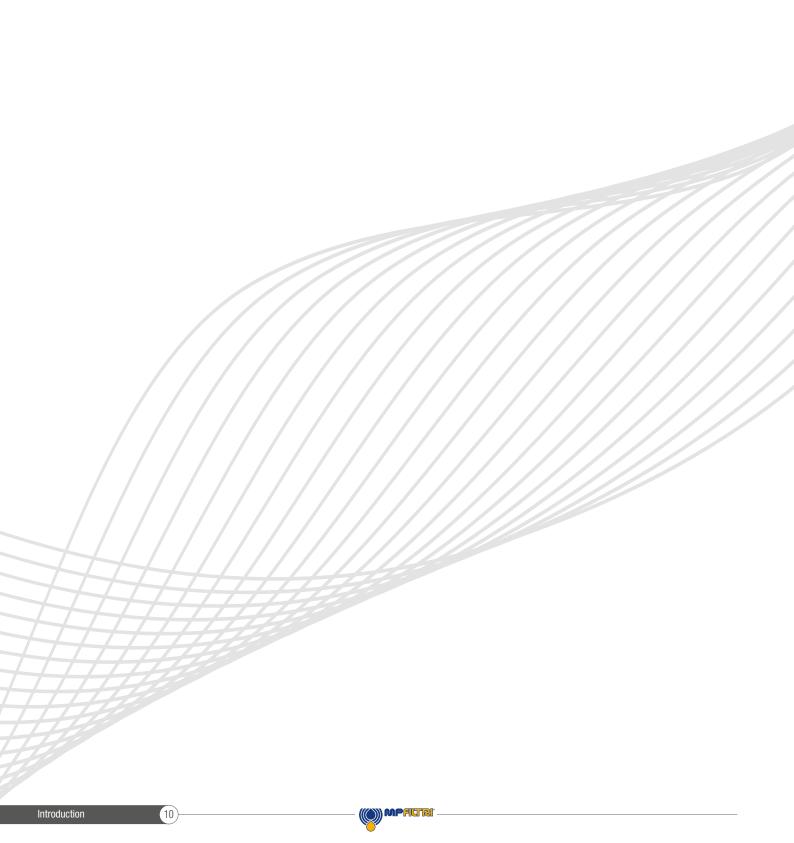
Mounting:

- In-Line

CONTAMINATION CONTROL SOLUTIONS

- Off-line, in-line particle counters
- Off-line bottle sampling products
- Fully calibrated using relevant ISO standards
- A wide range of variants to support fluid types and communication protocols
- Mobile Filtration Units with flow rates from 15 I/min up to 200 I/min

POWER TRANSMISSION PRODUCTS


- Aluminium bell-housings for motors from 0.12 kW to 400 kW
- Couplings in Aluminium

 Cast Iron Steel
- Damping rings
- Foot bracket
- Aluminium tanks
- Cleaning covers

TANK ACCESSORIES

- Oil filler and air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve selectors
- Pipe fixing brackets
- Pressure gauges

CONTAMINATION MANAGEMENT

INDEX

		Pag
1	HYDRAULIC FLUIDS	12
2	FLUIDS CONTAMINATION	12
3	FLUIDS COMPATIBILITY CHART	12
4	EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS	13
5	MEASURING THE SOLID CONTAMINATION LEVEL	13
6	FILTRATION TECHNOLOGIES	16
7	RECOMMENDED CONTAMINATION CLASSES	17
8	TYPES OF FILTERS	17
9	FILTER SIZING PARAMETERS	18
10	APPLICABLE STANDARDS FOR FILTER DEVELOPMENT	18
11	WATER IN HYDRAULIC AND LUBRICATING FLUIDS	19
(12)	THE ANTI-STATIC FILTERS Zerospark+	20

1 HYDRAULIC FLUIDS

The fluid is the vector that transmits power, energy within an oleodynamic circuit. In addition to transmitting energy through the circuit, it also performs additional functions such as lubrication, protection and cooling of the surfaces.

The classification of fluids used in hydraulic systems is coded in many regulatory references, different Standards.

The most important classification system for hydraulic fluids is the one defined by International Organization for Standardization (ISO), which established a classification system within their standard: "ISO 6743-4 Lubricants, Industrial Oils and Related Products" . In particular, the parts of interest for hydraulic fluids are:

- Lubricants, industrial oils and related products (class L)
- Classifications Part 4L Family H (Hydraulic systems)

The ISO 6743-4 classification system can be generally applied to the three primary classes of hydraulic fluids:

- Mineral Oils (i.e.: petroleum) Hydraulic Fluids (i.e.: HH: Mineral lubricants without corrosion inhibitors; HL: HH-type lubricants with oxidation reduction and anticorrosive additives; HM: HL-type lubricants with anti-wear additives; HV: HM-type lubricants with a higher viscosity grade and temperature properties; and others).
- Biodegradable Hydraulic Fluids (HExx), also defined as "Environmentally acceptable hydraulic fluids".
- Fire Resistant Hydraulic Fluids (HFxx), which could be further split into: Fire-resistant aqueous fluids (HFAx, HFB; HFC); Fire-resistant synthetic anhydrous fluids (HFDx).

The choice of fluid for an hydraulic system must take into account several parameters.

These parameters can adversely affect the performance of an hydraulic system, causing delay in the controls, pump cavitation, excessive absorption, excessive temperature rise, efficiency reduction, increased drainage, wear, jam/block or air intake in the plant.

The main properties that characterize hydraulic fluids and affect their choice are:

- DYNAMIC VISCOSITY

It identifies the fluid's resistance to sliding due to the impact of the particles forming it.

- KINEMATIC VISCOSITY

It is a widespread formal dimension in the hydraulic field.

It is calculated with the ratio between the dynamic viscosity and the fluid density.

Kinematic viscosity varies with temperature and pressure variations.

- VISCOSITY INDEX

This value expresses the ability of a fluid to maintain viscosity when the temperature changes.

A high viscosity index indicates the fluid's ability to limit viscosity variations by varying the temperature.

- FILTERABILITY INDEX

It is the value that indicates the ability of a fluid to cross the filter materials. A low filterability index could cause premature clogging of the filter material.

WORKING TEMPERATURE

Working temperature affects the fundamental characteristics of the fluid. As already seen, some fluid characteristics, such as cinematic viscosity, vary with the temperature variation.

When choosing a hydraulic oil, must therefore be taken into account of the environmental conditions in which the machine will operate.

COMPRESSIBILITY MODULE

Every fluid subjected to a pressure contracts, increasing its density. The compressibility module identifies the increase in pressure required to cause a corresponding increase in density.

- HYDROLYTIC STABILITY

It is the characteristic that prevents galvanic pairs that can cause wear in the plant/system.

- ANTIOXIDANT STABILITY AND WEAR PROTECTION

These features translate into the capacity of a hydraulic oil to avoid corrosion of metal elements inside the system.

- HEAT TRANSFER CAPACITY

It is the characteristic that indicates the capacity of hydraulic oil to exchange heat with the surfaces and then cool them.

2 FLUID CONTAMINATION

Whatever the nature and properties of fluids, they are inevitably subject to contamination. Fluid contamination can have two origins:

- INITIAL CONTAMINATION

Caused by the introduction of contaminated fluid into the circuit, or by incorrect storage, transport or transfer operations.

- PROGRESSIVE CONTAMINATION

Caused by factors related to the operation of the system, such as metal surface wear, sealing wear, oxidation or degradation of the fluid, the introduction of contaminants during maintenance, corrosion due to chemical or electrochemical action between fluid and components, cavitation. The contamination of hydraulic systems can be of different nature:

- SOLID CONTAMINATION

For example rust, slag, metal particles, fibers, rubber particles, paint particles or additives

- LIQUID CONTAMINATION

For example, the presence of water due to condensation or external infiltration or acids

- GASEOUS CONTAMINATION

For example, the presence of air due to inadequate oil level in the tank, drainage in suction ducts, incorrect sizing of tubes or tanks.

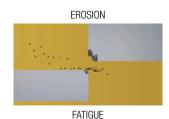
3 FLUID COMPATIBILITY CHARTS

For more detailed information on specific fluid compatibility please refer to the fluid compatibility charts on our website:

(4) EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS

Solid contamination is recognized as the main cause of malfunction, failure and early degradation in hydraulic systems. It is impossible to delete it completely, but it can be effectively controlled by appropriate devices.

CONTAMINATION IN PRESENCE OF LARGE TOLERANCES


CONTAMINATION IN PRESENCE OF NARROW TOLERANCES

Solid contamination mainly causes surface damage and component wear.

- ABRASION OF SURFACES
 Cause of leakage through mechanical seals, reduction of system performance, failures.
- SURFACE EROSION
 Cause of leakage through mechanical seals, reduction of system performance, variation in adjustment of control components, failures.
- ADHESION OF MOVING PARTS
 Cause of failure due to lack of lubrication.
- DAMAGES DUE TO FATIGUE
 Cause of breakdowns and components breakdown.

ABRASION

ADHESION

Liquid contamination mainly results in decay of lubrication performance and protection of fluid surfaces.

DISSOLVED WATER

- INCREASING FLUID ACIDITY

 Cause of surface corrosion and premature fluid oxidation
- GALVANIC COUPLE AT HIGH TEMPERATURES
 Cause of corrosion

FREE WATER - ADDITIONAL EFFECTS

- DECAY OF LUBRICANT PERFORMANCE
 Cause of rust and sludge formation, metal corrosion and increased solid contamination
- BATTERY COLONY CREATION

 Cause of worsening in the filterability feature

- ICE CREATION AT LOW TEMPERATURES
 Cause damage to the surface
- ADDITIVE DEPLETION
 Free water retains polar additives

Gaseous contamination mainly results in decay of system performance.

CUSHION SUSPENSION
 Cause of increased noise and cavitation.

MODIFICATION OF FLUID PROPERTIES

- FLUID OXIDATION
 Cause of corrosion acceleration of metal parts.
- (COMPRESSIBILITY MODULE, DENSITY, VISCOSITY)

 Cause of system's reduction of efficiency and of control.

 It is easy to understand how a system without proper contamination management is subject to higher costs than a system that is provided.
- MAINTENANCE Increase maintenance activities, spare parts, machine stop costs.
- ENERGY AND EFFICIENCY
 Efficiency and performance reduction due to friction, drainage, cavitation.

(5) MEASURING THE SOLID CONTAMINATION LEVEL

The level of contamination of a system identifies the amount of contaminant contained in a fluid. This parameter refers to a unit volume of fluid.

The level of contamination may be different at different points in the system. From the information in the previous paragraphs it is also apparent that the level of contamination is heavily influenced by the working conditions of the system, by its working years and by the environmental conditions.

What is the size of the contaminating particles that we must handle in our hydraulic circuit?

HUMAN HAIR (**75** μm)

MINIMUM DIMENSION VISIBLE WITH HUMAN EYES (40 µm)

TYPICAL CONTAMINAN' DIMENSION IN A HYDRAULIC CIRCUIT (4 - 14 µm)

Contamination level analysis is significant only if performed with a uniform and repeatable method, conducted with standard test methods and suitably calibrated equipment. To this end, ISO has issued a set of standards that allow tests to be conducted and express the measured values in the following ways.

- GRAVIMETRIC LEVEL - ISO 4405

The level of contamination is defined by checking the weight of particles collected by a laboratory membrane. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard.

The volume of fluid is filtered through the membrane by using a suitable suction system. The weight of the contaminant is determined by checking the weight of the membrane before and after the fluid filtration.

CLEAN MEMBRANE

Contaminated Membrane

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4406

The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. Measurement is performed by Contamination Monitoring Products (CMP).

Following the count, the contamination classes are determined, corresponding to the number of particles detected in the unit of fluid.

The most common classification methods follow ISO 4406 and SAE AS 4059 (Aerospace Sector) regulations.

NAS 1638 is still used although obsolete.

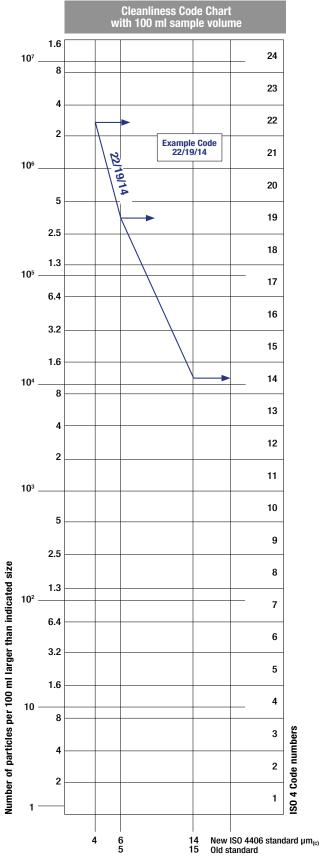
Classification example according to ISO 4406

The International Standards Organization standard ISO 4406 is the preferred method of quoting the number of solid contaminant particles in a sample. The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. The measurement is performed by Contamination Monitoring Products (CMP).

The numbers represent a code which identifies the number of particles of certain sizes in 1ml of fluid. Each code number has a particular size range. The first scale number represents the number of particles equal to or larger than 4 μ m_(c) per millilitre of fluid;

The second scale number represents the number of particles equal to or larger than $6 \mu m_{(c)}$ per millilitre of fluid;

The third scale number represents the number of particles equal to or larger than 14 μ m(c) per millilitre of fluid.


ISO 4406 - Allocation of Scale Numbers

Class	Number of particles per ml				
	Over	Up to			
28	1 300 000	2 500 000			
27	640 000	1 300 000			
26	320 000	640 000			
25	160 000	320 000			
24	80 000	160 000			
23	40 000	80 000			
22	20 000	40 000			
21	10 000	20 000			
20	5 000	10 000			
19	2 500	5 000			
18	1 300	2 500			
17	640	1 300			
16	320	640			
15	160	320			
14	80	160			
13	40	80			
12	20	40			
11	10	20			
10	5	10			
9	2.5	5			
8	1.3	2.5			
7	0.64	1.3			
6	0.32	0.64			
5	0.16	0.32			
4	0.08	0.16			
3	0.04	0.08			
2	0.02	0.04			
1	0.01	0.02			
0	0	0.01			

> $4 \mu m_{(c)} = 350 \text{ particles}$ > $6 \mu m_{(c)} = 100 \text{ particles}$ > $14 \mu m_{(c)} = 25 \text{ particles}$ 16/14/12

ISO 4406 Cleanliness Code System

Microscope counting examines the particles differently to Contamination Monitoring Products (CMP) and the code is given with two scale numbers only. These are at 5 μ m and 15 μ m equivalent to the 6 μ m_(c) and 14 μ m_(c) of Contamination Monitoring Products (CMP).

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE SAE AS4059-1 and SAE AS4059-2

Classification example according to SAE AS4059 - Rev. G

The code, prepared for the aerospace industry, is based on the size, quantity, and particle spacing in a 100 ml fluid sample. The contamination classes are defined by numeric codes, the size of the contaminant is identified by letters (A-F).

This SAE Aerospace Standard (AS) defines cleanliness levels for particulate contamination of hydraulic fluids and includes methods of reporting data relating to the contamination levels. Tables 1 and 2 below provide differential and cumulative particle counts respectively for counts obtained by an automatic particle counter, e.g. LPA3.

Table 1 - Class for differential measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml (3					
	5-15 μm	15-25 μm	25-50 μm	50-100 μm	>100 µm	(1)
	6-14 μm _(c)	14-21 μm _(c)	21-38 μm _(c)	38-70 μm _(c)	>70 µm _(c)	(2)
00	125	22	4	1	0	
0	250	44	8	2	0	_
1	500	89	16	3	1	_
2	1 000	178	32	6	1	_
3	2 000	356	63	11	2	_
4	4 000	712	126	22	4	
5	8 000	1 425	253	45	8	_
6	16 000	2 850	506	90	16	
7	32 000	5 700	1 012	180	32	
- 8	64 000	11 400	2 025	360	64	
9	128 000	22 800	4 050	720	128	_
10	256 000	45 600	8 100	1 440	256	
11	512 000	91 200	16 200	2 880	512	
12	1 024 000	182 400	32 400	5 760	1 024	_

6 - 14 μ m_(c) = 15 000 particles 14 - 21 μ m_(c) = 2 200 particles 21 - 38 μ m_(c) = 200 particles $38 - 70 \, \mu m_{(c)} =$ SAE AS4059 REV G - Class 6

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range CMP calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter. (3) Contamination classes and particle count limits are identical to NAS 1638.

Table 2 - Class for cumulative measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml						
	>1 µm	>5 µm	>15 µm	>25 µm	>50 µm	>100 µm	(1)
	>4 µm _(c)	>6 µm _(c)	>14 µm _(c)	>21 µm _(c)	>38 µm _(c)	>70 µm _(c)	(2)
000	195	76	14	3	1	0	_
00	390	152	27	5	1	0	
0	780	304	54	10	2	0	
1	1 560	609	109	20	4	1	
2	3 120	1 217	217	39	7	1	
3	6 250	2 432	432	76	13	2	
4	12 500	4 864	864	152	26	4	
5	25 000	9 731	1 731	306	53	8	
6	50 000	19 462	3 462	612	106	16	
7	100 000	38 924	6 924	1 224	212	32	
	200 000	77 849	13 849	2 449	424	64	
9	400 000	155 698	27 698	4 898	848	128	
10	800 000	311 396	55 396	9 796	1 696	256	
11	1 600 000	622 792	110 792	19 592	3 392	512	
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024	

 $> 4 \mu m_{(c)} = 45 000 \text{ particles}$ $> 6 \mu m_{(c)} = 15 000 \text{ particles}$

 $> 14 \, \mu m_{(c)} = 1500 \, particles$ $> 21 \, \mu m_{(c)} =$

SAE AS4059 REV G cpc* Class 6 6/6/5/5/4/2

cumulative particle count

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, CMP calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter. (3) Contamination classes and particle count limits are identical to NAS 1638.

- CLASSES OF CONTAMINATION ACCORDING TO NAS 1638 (January 1964)

The NAS system was originally developed in 1964 to define contamination classes for the contamination contained within aircraft components.

The application of this standard was extended to industrial hydraulic systems simply because nothing else existed at the time.

The coding system defines the maximum numbers permitted of 100 ml volume at various size intervals (differential counts) rather than using cumulative counts as in ISO 4406. Although there is no guidance given in the standard on how to quote the levels, most industrial users quote a single code which is the highest recorded in all sizes and this convention is used on MP Filtri Contamination Monitoring Products (CMP).

The contamination classes are defined by a number (from 00 to 12) which indicates the maximum number of particles per 100 ml, counted on a differential basis, in a given size bracket. Size Range Classes (in microns)

	Maximum Contamination Limits per 100 ml						
Class	5-15	15-25	25-50	50-100	>100		
00	125	22	4	1	0		
0	250	44	8	2	0		
1	500	89	16	3	1		
2	1 000	178	32	6	1		
3	2 000	356	63	11	2		
4	4 000	712	126	22	4		
5	8 000	1 425	253	45	8		
6	16 000	2 850	506	90	16		
7	32 000	5 700	1 012	180	32		
8	64 000	11 400	2 025	360	64		
9	128 000	22 800	4 050	720	128		
10	256 000	45 600	8 100	1 440	256		
11	512 000	91 200	16 200	2 880	512		
12	1 024 000	182 400	32 400	5 760	1 024		

 $5-15 \, \mu m = 42 \, 000 \, particles$ $15-25 \, \mu m = 2 \, 200 \, particles$ 25-50 μm = 150 particles $50-100 \, \mu m =$ 18 particles

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4407

The level of contamination is defined by counting the number of particles collected by a laboratory membrane per unit of fluid volume. The measurement is done by a microscope. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard. The fluid volume is filtered through the membrane, using a suitable suction system.

The level of contamination is identified by dividing the membrane into a predefined number of areas and by counting the contaminant particles using a suitable laboratory microscope.

MICROSCOPE CONTROL AND MEASUREMENT

Example figure 1 and 2

COMPARISON PHOTOGRAPH'S 1 graduation = 10um

Fig. 2 Fig. 1

MPFILTRI

For other comparison photographs for contamination classes see the 'Fluid Condition and Filtration Handbook".

- CLEANLINESS CODE COMPARISON

Although ISO 4406 standard is being used extensively within the hydraulics industry other standards are occasionally required and a comparison may be requested. The table below gives a very general comparison but often no direct comparison is possible due to the different classes and sizes involved.

ISO 4406	SAE AS4059 Table 2	SAE AS4059 Table 1	NAS 1638
> 4 μm _(c) 6 μm _(c) 14 μm _(c)	> 4 μm _(c) 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100
23 / 21 / 18	13A / 12B / 12C	12	12
22 / 20 / 17	12A / 11B / 11C	11	11
21 / 19 / 16	11A / 10B / 10C	10	10
20 / 18 / 15	10A / 9B / 9B	9	9
19 / 17 / 14	9A / 8B / 8C	8	8
18 / 16 / 13	8A / 7B / 7C	7	7
17 / 15 / 12	7A / 6B / 6C	6	6
16 / 14 / 11	6A / 5B / 5C	5	5
15 / 13 / 10	5A / 4B / 4C	4	4
14 / 12 / 09	4A / 3B / 3C	3	3

Microfibre filtration technology Microfibre TRATION Polyester Microfibre RE-FILTRATION LAYER

The filtration efficiency of metallic mesh filtrations is defined as the maximum particle size that can pass through the meshes of the filtering grid.

The efficiency of microfibre and paper filtration $(\beta_{x(c)})$ is defined through a lab test called Multipass Test. The efficiency value $(\beta_{\chi(c)})$ is defined as the ratio between the number of particles of certain dimensions detected upstream and downstream of the filter.

Upstream particles number $> X \mu m_{(c)}$ $= \beta_{X(C)}$ Downstream particles number $> X \mu m_{(c)}$

(6) FILTRATION TECHNOLOGIES

Various mechanisms such as mechanical stoppage, magnetism, gravimetric deposit, or centrifugal separation can be used to reduce the level of contamination.

The mechanical stoppage method is most effective and can take place in two ways:

- SURFACE FILTRATION

It is by direct interception. The filter prevents particles larger than the pores from continuing in the plant / system. Surface filters are generally manufactured with metal canvases or meshes.

- DEPTH FILTERING Filters are constructed by fiber interlacing. Such wraps form pathways of different shapes and sizes in which the particles remain trapped when they find smaller apertures than their diameter.

Depth filters are generally produced with papers impregnated with phenolic resins, metal fibers or inorganic fibers.

In inorganic fiber filtration, commonly called microfibre, the filtering layers are often overlapped in order to increase the ability to retain the contaminant.

Value $(B_{x(c)})$	2	10	75	100	200	1000
Efficiency	50%	90%	98.7%	99%	99.5%	99.9%

Test conditions, such as type of fluid to be used (MIL-H-5606), type of contaminant to be used (ISO MTD), fluid viscosity, test temperature, are determined by ISO

In addition to the filtration efficiency value during the Multipass test, other important features, such as filtration stability (β stability) and dirt holding capacity (DHC), are also tested.

Poor filtration stability is the cause of the filtering quality worsening as the filter life rises. Low dirt holding capacity causes a reduction in the life of the filter.

WIRE MESH FILTRATION							
		T					
	7						

Filtration ISO Standard Comparison									
$B_{X(C)} > 1000$	$\beta_{\rm X(C)} > 1000$ $\beta_{\rm X} > 200$ MP Filtri								
IŠÓ 16889	ISO 4572	Filter media code							
5 μm _(c)	3 μm	A03							
7 μm _(c)	6 μm	A06							
10 μm _(c)	10 μm	A10							
16 μm _(C)	18 μm	A16							
21 μm _(c)	25 μm	A25							

(7) RECOMMENDED CONTAMINATION CLASSES

Any are the nature and the properties of fluids, they are inevitably subject to contamination. The level of contamination can be managed by using special components called filters.

Hydraulic components builders, knowing the problem of contamination, recommend the filtration level appropriate to the use of their products.

Example of recommended contamination levels for pressures below 140 bar.

Piston pumps						
with fixed flow rate	•					
Piston pumps						
with variable flow rate						
Vane pumps						
with fixed flow rate		•				
Vane pumps						
with variable flow			,			
Engines	•					
Hydraulic cylinders	•					
Actuators					•	
Test benches						•
Check valve	•					
Directional valves	•					
Flow regulating valves	•					
Proportional valves				•		
Servo-valves					•	
Flat bearings			•			
Ball bearings				•		
ISO 4406 CODE	20/18/15	19/17/14	18/16/13	17/15/12	16/14/11	15/13/10
Recommended	B _{21(c)}	B _{15(c)}	B _{10(c)}	B7(c)	B7(c)	₿5(c)
filtration $\beta x(c) \ge 1.000$	>1000	>1000	>1000	>1000	>1000	>1000
MP Filtri media code	A25	A16	A10	A06	A06	A03

The common classification of filters is determined by their position in the plant.

8 TYPES OF FILTERS

Suction filters

They are positioned before the pump and are responsible for protecting the pump from dirty contaminants. It also provides additional flow guidance to the pump suction line

Being subject to negligible working pressures are manufactured with simple and lightweight construction.

They are mainly produced with gross grade surface filtrations, mainly $60 \div 125 \,\mu m$. They can be equipped with a magnetic filter for retaining ferrous particles.

They are generally placed under the fluid head to take advantage of the piezometric thrust of the fluid and reduce the risk of cavitation.

There are two types of suction filters:

- IMMERSION FILTERS
 - Simple filter element screwed on the suction pipe
- FILTERS WITH CONTAINER
 - Container filters that are more bulky, but provide easier maintenance of the tank

Delivery (or Pressure) filters

They are positioned between the pump and most sensitive regulating and controlling components, such as servo valves or proportional valves, and are designed to ensure the class of contamination required by the components used in the circuit.

Being subjected to high working pressures are manufactured with more robust and articulated construction. In particular situations of corrosive environments or aggressive fluids can be made of stainless steel.

They are mainly produced with filtering depths of $3 \div 25 \,\mu\text{m}$.

They can be manufactured with in-line connections, with plate or flange connections or directly integrated into the circuit control blocks / manifolds. They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the plant / system is in operation without interruption of the working cycle.

Return filters

They are positioned on the return line to the tank and perform the task of filtering the fluid from particles entering the system from the outside or generated by the wear of the components.

They are generally fixed to the reservoir (for this reason also called top tank mounted), positioned semi-immersed or completely immersed.

The positioning of the return filters must guarantee in all operating conditions that the fluid drainage takes place in immersed condition; this is to avoid creating foams in the tank that can cause malfunctions or cavitation in the pumps.

For the sizing of the return filters, account must be taken of the presence of accumulators or cylinders that can make the return flow considerably greater than the pump suction flow rate.

Being subject to contained working pressures are manufactured with simple and lightweight construction.

Normally it is possible to extract the filter element without disconnecting the filter from the rest of the system.

Combined filters

They are designed to be applied to systems with two or more circuits. They are commonly used in hydrostatic transmission machines where they have a dual filtration function of the return line and suction line of the hydrostatic transmission pump.

The filter is equipped with a valve that keeps the 0.5 bar pressure inside the filter. A portion of the fluid that returns to the tank is filtered by the return filter element, generally produced with absolute filtration, and returns to the transmission booster pump.

Only excess fluid returns to the tank through the valve.

The internal pressure of the filter and the absolute filtration help to avoid the cavitation phenomenon inside the pump.

Off-line filters

They are generally used in very large systems / plants, placed in a closed circuit independent from the main circuit. They remain in operation regardless of the operation of the main circuit and are crossed by a constant flow rate.

They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the unit is in operation without interruption of the work cycle.

Venting filters

During the operation of the plants, the fluid level present in the reservoir changes continuously.

The result of this continuous fluctuation is an exchange of air with the outside environment.

The venting filter function, positioned on the tank, is to filter the air that enters the tank to compensate for fluid level variations.

9 FILTER SIZING PARAMETERS

The choice of the filter system for an hydraulic system is influenced by several factors.

It is necessary to consider the characteristics of the various components present in the plant and their sensitivity to contamination.

It is also necessary to consider all the tasks that the filter will have to do within the plant:

- FLUID PROTECTION FROM CONTAMINATION
- PROTECTION OF OLEODYNAMIC COMPONENTS SENSITIVE TO CONTAMINATION
- PROTECTION OF OLEODYNAMIC PLANTS FROM ENVIRONMENTAL WASTE
- PROTECTION OF OLEODYNAMIC PLANTS FROM CONTAMINATION CAUSED BY COMPONENTS' FAILURES

The advantages of proper positioning and sizing of the filters are

- MORE RELIABILITY OF THE SYSTEM
- LONGER LIFE OF THE FLUID COMPONENTS
- REDUCTION OF STOP TIME
- REDUCTION OF FAILURE CASUALITIES

Each hydraulic filter is described by general features that identify the possibility of use in different applications.

• MAXIMUM WORKING PRESSURE (Pmax)

The maximum working pressure of the filter must be greater than or equal to the pressure of the circuit section in which it will be installed.

PRESSURE DROP (ΔP)

The pressure drop depends on a number of factors, such as the working circuit temperature, the fluid viscosity, the filter element cleaning condition.

• WORKING TEMPERATURE (T)

The working temperature deeply affect the choice of materials. Excessively high or low temperatures may adversely affect the strength of the materials or the characteristics of the seals.

• FILTRATION EFFICIENCY (%) / FILTRATION RATIO (β_{x(c)})

Filtration efficiency is the most important parameter to consider when selecting a filter.

When choosing the filtration performances, the needs of the most sensitive components in the system must be considered.

FLUID TYPE

The type of fluid influences the choice of filters in terms of compatibility and viscosity. It is always mandatory to check the filterability.

PLACEMENT IN THE PLANT

The position of the filter in the system conditions the efficiency of all filter performances.

(10) APPLICABLE STANDARDS FOR FILTER DEVELOPMENT

In order to obtain unique criteria for development and verification of the filters performance, specific regulations for the filters and filter elements testing have been issued by ISO. These norms describe the target, the methodology, the conditions and the presentation methods for the test results.

ISO 2941

Hydraulic fluid power -- Filter elements -- Verification of collapse/burst pressure rating

This Standard describes the method for testing the collapse / burst resistance of the filter elements.

The test is performed by crossing the contaminated fluid filter element at a predefined flow rate. The progressive clogging of the filter element, determined by contamination, causes an increase in differential pressure.

ISO 2942

Hydraulic fluid power -- Filter elements -- Verification of fabrication integrity and determination of the first bubble point

This Standard describes the method to verify the integrity of the assembled filter elements.

It can be used to verify the quality of the production process or the quality of the materials by verifying the pressure value of the first bubble point.

ISO 2943

Hydraulic fluid power -- Filter elements -- Verification of material compatibility with fluids

This Standard describes the method to verify the compatibility of materials with certain hydraulic fluids.

The test is carried out by keeping the element (the material sample) immersed in the fluid under high or low temperature conditions for a given period of time and verifying the retention of the characteristics.

ISO 3723

Hydraulic fluid power -- Filter elements -- Method for end load test

This Standard describes the method for verifying the axial load resistance of the filter elements.

After performing the procedure described in ISO 2943, the designed axial load is applied to the filter element. To verify the test results, then the test described in ISO 2941 is performed.

ISO 3968

Hydraulic fluid power -- Filters -- Evaluation of differential pressure versus flow characteristics

This Standard describes the method for checking the pressure drop across the filter

The test is carried out by crossing the filter from a given fluid and by detecting upstream and downstream pressures.

Some of the parameters defined by the Standard are the fluid, the test temperature, the size of the tubes, the position of the pressure detection points.

ISO 16889

Hydraulic fluid power -- Filters -- Multi-pass method for evaluating filtration performance of a filter element

This Standard describes the method to check the filtration characteristics of the filter elements.

The test is performed by constant introduction of contaminant (ISO MTD). The characteristics observed during the test are the filtration efficiency and the dirty holding capacity related to the differential pressure.

18

ISO 23181

Hydraulic fluid power -- Filter elements -- Determination of resistance to flow fatigue using high viscosity fluid

This Standard describes the method for testing the fatigue resistance of the filter elements. The test is carried out by subjecting the filter to continuous flow variations, thus differential pressure, using a high viscosity fluid.

ISO 11170

Hydraulic fluid power -- Sequence of tests for verifying performance characteristics of filter elements

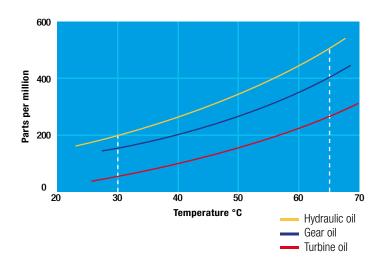
The Standard describes the method for testing the performance of filter elements. The protocol described by the regulations provides the sequence of all the tests described above in order to verify all the working characteristics (mechanical, hydraulic and filtration).

ISO 10771-1

Hydraulic fluid power -- Fatigue pressure testing of metal pressure-containing envelopes -- Test method

This Standard describes the method to check the resistance of the hydraulic components with pulsing pressure.

It can be applied to all metal components (excluding tubes) subject to cyclic pressure used in the hydraulic field.

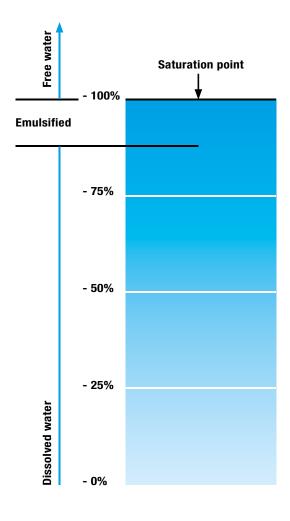

(11) WATER IN HYDRAULIC AND LUBRICATING FLUIDS

Water Content

In mineral oils and non aqueous resistant fluids water is undesirable. Mineral oil usually has a water content of 50-300 ppm (@40°C) which it can support without adverse consequences.

Once the water content exceeds about 300ppm the oil starts to appear hazy. Above this level there is a danger of free water accumulating in the system in areas of low flow. This can lead to corrosion and accelerated wear.

Similarly, fire resistant fluids have a natural water which may be different to mineral oil.


Saturation Levels

Since the effects of free (also emulsified) water is more harmful than those of dissolved water, water levels should remain well below the saturation point.

However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. There is no such thing as too little water. As a guideline, we recommend maintaining saturation levels below 50% in all equipment.

TYPICAL WATER SATURATION LEVEL FOR NEW OILS Examples:

Hydraulic oil @ 30° C = 200 ppm = 100% saturation Hydraulic oil @ 65° C = 500 ppm = 100% saturation

WATER REMOVAL

Water is present everywhere, during storage, handling and servicing.

MP Filtri filter elements feature an absorbent media which protects hydraulic systems from both particulate and water contamination.

MP Filtri's filter element technology is available with inorganic microfiber media with a filtration rating 25 µm (therefore identified with media designation WA025), providing absolute filtration of solid particles to $B_{X(C)} = 1000$.

Absorbent media is made by water absorbent fibres which increase in size during the absorption process.

Free water is thus bonded to the filter media and completely removed from the system (it cannot even be squeezed out).

Fabric that absorbs water

Absorber media layer

The Filter Media has absorbed water

By removing water from your fluid power system, you can prevent such key problems as:

- corrosion (metal etching)
- loss of lubricant power
- accelerated abrasive wear in hydraulic components
- valve-locking
- bearing fatigue
- viscosity variance (reduction in lubricating properties)
- additive precipitation and oil oxidation
- increase in acidity level
- increased electrical conductivity (loss of dielectric strength)
- slow/weak response of control systems

For more details please refer to our dedicate brochure WATER REMOVAL"

20

(12) THE ANTI-STATIC FILTERS

zerospark is a specialist solution designed to solve the problem of electrostatic discharge inside hydraulic filters. Caused by the electrical charge build-up due to the passage of oil through the filters, this can result in damage to filter elements, oils and circuit components. It can even cause fire hazards in environments where flammable materials are present.

THE TRIBOELECTRIC EFFECT

The body with the most electronegativity strips electrons from the other, generating a build-up of a net negative charge on itself. The other body is charged by the same amount but with the opposite sign, giving rise to very high potential differences. These, if not dissipated, can give rise to electrostatic discharges.

1. Contact

2. Distance ≤ 10 mm

4. Electrostatic charged bodies

For more details please refer to our dedicate brochure "ZEROSPARK"

FILTER SIZING

INDEX

	rugi
CALCULATION	22
FILTERS SIZING SOFTWARE	29

THE CORRECT FILTER SIZING HAS TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING ON THE APPLICATION.

FOR EXAMPLE, THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAS TO BE IN THE RANGE 0.4 - 0.6 bar / 5.80 - 8.70 psi.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³/lb/ft³).

The filter element pressure drop Δpe is proportional to its viscosity (mm²/s / SUS), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt) / 150 SUS.

Sizing data for single filter element, head at top

 Δpc = Filter housing pressure drop [bar / psi]

 Δpe = Filter element pressure drop [bar / psi]

Y = Corrective factor Y (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

Q = flow rate (l/min - gpm)

V1 reference oil viscosity = 30 mm²/s (cSt) /150 SUS

V2 = operating oil viscosity in mm²/s (cSt) / SUS

Filter element pressure drop calculation with an oil viscosity different than 30 mm²/s (cSt) / 150 SUS

International system:

 $\Delta pe = Y : 1000 \times Q \times (V2:V1)$

Imperial system:

 $\Delta pe = Y : 17.2 \times Q \times (V2:V1)$

 Δp Tot. = $\Delta pc + \Delta pe$

Verification formula

 Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Filter family	Δp max				
	[bar]	[psi]			
Suction	0.08 bar	1.15 psi			
Return	0.50 bar	7.25 psi			
Return - Suction (*)	1.50 bar	22.00 psi			
Low & Medium Pressure/Duplex	0.70 bar	10.15 psi			
High Pressure Pressure/Duplex	1.50 bar	22.00 psi			
Stainless Steel	1.50 bar	22.00 psi			
ATEX	1.50 bar	22.00 psi			

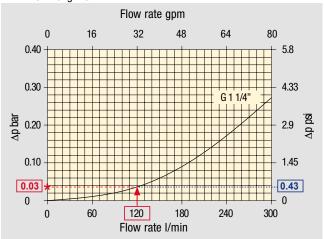
^(*)The suction flow rate should not exceed 30% of the return flow rate

Filter pressure drop calculation example

Application data:

Selected filter: tank top return filter - MPT110 series with bypass valve and G 1 1/4" inlet connection.

Selected filter element: MF100 length 4

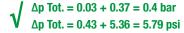

Required filtration efficiency = $25 \mu m$ absolute filtration with microfibre

Pressure Pmax = 10 bar / 145.03 psi Flow rate Q = 120 l/min / 31.7 gpm Viscosity V2 = 46 mm²/s (cSt) / 216 SUS Oil density = 0.86 kg/dm^3 / 53.68 lb/ft^3

Calculation:

 $\Delta pc = 0.03 \, bar / 0.43 \, psi$ (see graphic below)

MPT 110 - Length 3 - 4



Filter housings Δp pressure drop.

The curves are plotted using mineral oil with density of 0.86 kg/dm 3 in compliance with ISO 3968. Δp varies proportionally with density.

Filter element				l ute filt ı H Series	Nominal filtration N Series				
Туре		A03	A06	A10	A16	A25	P(00)10	P(00)25	M(00)25 M(00)60 M(00)90
Return filter	S	74.00	E0.00	20.00	16.00	0.00	6.40	E E1	4.40
		74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00
020	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96
-	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82

 $\Delta pe = (2.00: 1000) \times 120 \times (46: 30) = 0.37 \text{ bar}$ $\Delta pe = (2.00: 17.2) \times 32 \times (216: 150) = 5.36 \text{ psi}$

The selection is correct because the total pressure drop value is inside the admissible range for top tank return filters.

In case the max allowed total pressure drop is not verified, it is necessary to repeat the calculation changing the filter and/or filter element length/size.

SUCTION FILTERS

Filter element							
Туре	Length	P0010	P0025	M0025	M0060	M0090	M0250
SMC 250	10	0.65	0.20	0.10	0.08	0.05	0.03
SSC 503	10	-	-	0.17	0.11	0.11	0.11
SSC 504	10	-	-	0.11	0.08	0.08	0.08
SSC 505	10	-	-	0.23	0.18	0.18	0.18
SSC 510	10	-	-	0.18	0.14	0.14	0.14
SSC 535	10	-	-	0.08	0.05	0.05	0.05
SSC 540	10	-	-	0.05	0.04	0.04	0.04
FEX 060	10	4.58	3.22	1.02	0.89	0.63	0.63
FEX 000	20	1.97	1.38	0.62	0,45	0.29	0.29
FEX 110	10	1.33	1.12	0.22	0.18	0.14	0.14
TEX 110	20	0.90	0.76	0.15	0.10	0.09	0.09

RETURN FILTERS

Reference oil viscosity 30 mm²/s

Filter element			A	bsolute filtrati H Series	on			Nominal filt N Series	
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25 - M60 - M90
	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00
	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MFX 030 MF 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82
MF 180	1	3.67	3.05	1.64	1.56	1.24	1.18	1.06	0.26
MFX 180	2	1.69	1.37	0.68	0.54	0.51	0.43	0.39	0.12
MF 190 MFX 190	2	1.69	1.37	0.60	0.49	0.44	0.35	0.31	0.11
	1	3.20	2.75	1.39	1.33	1.06	0.96	0.87	0.22
MF 400 MFX 400	2	2.00	1.87	0.88	0.85	0.55	0.49	0.45	0.13
III X 400	3	1.90	1.60	0.63	0.51	0.49	0.39	0.35	0.11
MF 750 MFX 750	1	1.08	0.84	0.49	0.36	0.26	0.21	0.19	0.06
MLX 250	2	3.00	3.04	1.46	1.25	1.17	_	_	M25
		0.00	0.0.		1.20				0.20
MLX 660	2	1.29	1.26	0.52	0.44	0.38	-	-	M25 0.10
CU 025		78.00	48.00	28.00	24.00	9.33	9.33	8.51	1.25
CU 040		25.88	20.88	10.44	10.00	3.78	3.78	3.30	1.25
CU 100		15.20	14.53	5.14	4.95	2.00	2.00	0.17	1.10
CU 250		3.25	2.55	1.55	1.35	0.71	0.71	0.59	0.25
CU 630		1.96	1.68	0.85	0.72	0.24	0.42	0.36	0.09
CU 850		1.06	0.84	0.42	0.33	0.17	0.17	0.13	0.04

TO BE CONTINUED >>

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

FILTER SIZING Corrective factor

RETURN FILTERS

Filter element			Al	bsolute filtratio H Series	on		Nominal filtration N Series		
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25 - M60 - M90
									M25
MR 250	2	3.61	4.08	1.81	1.71	1.35	-	-	0.55
IVIN 23U	4	2.10	1.70	1.14	0.77	0.53	-	-	0.60
	1	19.00	17.00	6.90	6.30	4.60	2.94	2.52	1.60
	2	11.70	10.80	4.40	4.30	3.00	2.94	2.52	1.37
MR 100	3	7.80	6.87	3.70	3.10	2.70	2.14	1.84	1.34
	4	5.50	4.97	2.60	2.40	2.18	1.72	1.47	1.34
	5	4.20	3.84	2.36	2.15	1.90	1.60	1.37	1.34
	1	5.35	4.85	2.32	1.92	1.50	1.38	1.20	0.15
MR 250	2	4.00	3.28	1.44	1.10	1.07	0.96	0.83	0.13
IVIN 250	3	2.60	2.20	1.08	1.00	0.86	0.77	0.64	0.12
	4	1.84	1.56	0.68	0.56	0.44	0.37	0.23	0.11
	1	3.10	2.48	1.32	1.14	0.92	0.83	0.73	0.09
	2	2.06	1.92	0.82	0.76	0.38	0.33	0.27	0.08
MR 630	3	1.48	1.30	0.60	0.56	0.26	0.22	0.17	0.08
	4	1.30	1.20	0.48	0.40	0.25	0.21	0.16	0.08
	5	0.74	0.65	0.30	0.28	0.13	0.10	0.08	0.04
	1	0.60	0.43	0.34	0.25	0.13	0.12	0.09	0.03
MR 850	2	0.37	0.26	0.23	0.21	0.11	0.08	0.07	0.03
IVII I UJU	3	0.27	0.18	0.17	0.17	0.05	0.04	0.04	0.02
	4	0.23	0.16	0.13	0.12	0.04	0.03	0.03	0.02

RETURN / SUCTION FILTERS

Filter elemen	nt	Absolute filtration					
Туре	Length	A10	A16	A25			
RSX 116	1	5.12	4.33	3.85			
NOV 110	2	2.22	1.87	1.22			
DOV 405	1	2.06	1.75	1.46			
RSX 165 RSX 166	2	1.24	1.05	0.96			
110% 100	3	0.94	0.86	0.61			

Filter element		Absolute filtration N Series							
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25 - M60 - M90
	1	16.25	15.16	8.75	8.14	5.87	2.86	2.65	0.14
CU 110	2	12.62	10.44	6.11	6.02	4.16	1.60	1.49	0.12
CU 110	3	8.57	7.95	5.07	4.07	2.40	1.24	1.15	0.11
	4	5.76	4.05	4.05	2.36	1.14	0.91	0.85	0.05

LOW & MEDIUM PRESSURE FILTERS

Filter element		Absolute filtration N - W Series					Nominal filtration N Series		
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25
	1	16.25	15.16	8.75	8.14	5.87	2.86	2.65	0.14
CU 110	2	12.62	10.44	6.11	6.02	4.15	1.60	1.49	0.12
00 110	3	8.57	7.95	5.07	4.07	2.40	1.24	1.15	0.11
	4	5.76	4.05	2.80	2.36	1.14	0.91	0.85	0.05
	1	5.30	4.80	2.00	1.66	1.32	0.56	0.43	0.12
CU 210	2	3.44	2.95	1.24	1.09	0.70	0.42	0.35	0.09
	3	2.40	1.70	0.94	0.84	0.54	0.33	0.23	0.05
	016	7.95	7.20	3.00	2.49	1.98	0.84	0.65	0.18
DN	025	5.00	4.53	1.89	1.57	1.25	0.53	0.41	0.11
	040	3.13	2.66	1.12	0.98	0.63	0.38	0.32	0.08
	2	3.14	2.55	1.46	1.22	0.78	0.75	0.64	0.19
	3	2.15	1.70	0.94	0.78	0.50	0.40	0.34	0.10
CU 400	4	1.60	1.28	0.71	0.61	0.40	0.34	0.27	0.08
	5	1.00	0.83	0.47	0.34	0.20	0.24	0.19	0.06
	6	0.82	0.58	0.30	0.27	0.17	0.22	0.18	0.105
CU 900	1	0.86	0.63	0.32	0.30	0.21	-	-	0.05
011.050	2	1.03	0.80	0.59	0.40	0.26	-	-	0.05
CU 950	3	0.44	0.40	0.27	0.18	0.15	-	-	0.02
MR 630	7	0.88	0.78	0.36	0.34	0.16	0.12	0.96	0.47

HIGH PRESSURE FILTERS

Reference oil viscosity 30 mm²/s

Filter element			Nominal filtration N Series				
Туре	Length	A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
HP 010	2	220.28	165.56	74.08	59.13	37.05	-
HP 011	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
LID OFO	2	24.25	21.26	11.70	9.09	4.90	1.40
HP 050 HPX 050	3	17.37	16.25	8.90	7.18	3.63	1.25
III X 030	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
	1	58.50	43.46	23.16	19.66	10.71	1.28
HP 065	2	42.60	25.64	16.22	13.88	7.32	1.11
	3	20.50	15.88	8.18	6.81	3.91	0.58
	1	20.33	18.80	9.71	8.66	4.78	2.78
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01
	1	17.53	15.91	7.48	6.96	5.94	1.07
HP 150	2	8.60	8.37	3.54	3.38	3.15	0.58
	3	6.53	5.90	2.93	2.79	2.12	0.49

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

TO BE CONTINUED >>

FILTER SIZING Corrective factor

HIGH PRESSURE FILTERS

Filter element			Nominal filtration N Series				
Туре	Length	A03	A06	A10	A16	A25	M25
	1	10.88	9.73	5.02	3.73	2.54	1.04
HP 320	2	4.40	3.83	1.75	1.48	0.88	0.71
NF 320	3	2.75	2.11	1.05	0.87	0.77	0.61
	4	2.12	1.77	0.98	0.78	0.55	0.47
	1	4.44	3.67	2.30	2.10	1.65	0.15
	2	3.37	2.77	1.78	1.68	1.24	0.10
HP 500	3	2.22	1.98	1.11	1.09	0.75	0.08
	4	1.81	1.33	0.93	0.86	0.68	0.05
	5	1.33	1.15	0.77	0.68	0.48	0.04
	1	3.65	2.95	2.80	1.80	0.90	0.38
HP 325	2	2.03	1.73	1.61	1.35	0.85	0.36
	3	1.84	1.42	1.32	1.22	0.80	0.35

Filter element	Filter element			bsolute filtrati d S - H - U Series		
Туре	Length	A03	A06	A10	A16	A25
	1	424.58	319.74	235.17	194.44	163.78
HP 010	2	281.06	211.25	94.35	75.45	47.26
HP 011	3	130.14	97.50	43.63	34.82	21.81
	4	109.39	82.25	36.79	29.37	18.40
	2	73.00	57.00	28.00	24.00	17.20
HP 039	3	40.90	36.33	21.88	18.80	11.20
	4	31.50	28.22	17.22	9.30	6.70
	1	47.33	34.25	21.50	20.50	14.71
HP 050	2	29.10	25.95	10.04	10.90	5.88
HPX 050	3	20.85	19.50	10.68	8.61	4.36
111 X 000	4	14.55	12.90	7.32	6.90	3.69
	5	9.86	9.34	6.40	4.80	2.50
	1	29.16	25.33	13.00	12.47	5.92
HP 135	2	14.28	11.04	7.86	7.90	4.44
	3	8.96	7.46	4.89	4.16	3.07
	1	13.00	12.19	6.80	6.40	3.32
HP 320	2	6.45	5.31	3.01	2.89	1.73
III 320	3	4.13	3.14	1.90	1.78	1.17
	4	3.17	2.71	1.80	1.70	1.10
	1	9.70	8.81	4.55	4.47	2.80
	2	5.46	4.63	2.88	2.68	2.20
HP 500	3	3.90	3.74	2.22	2.07	1.53
	4	3.10	2.84	1.56	1.53	1.02
	5	1.93	1.83	1.14	1.08	0.69

STAINLESS STEEL HIGH PRESSURE FILTERS

Filter element			Nominal filtration N Series				
Туре	Length	A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
HP 010	2	220.28	165.56	74.08	59.13	37.05	-
HP 011	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
	2	24.25	21.26	11.70	9.09	4.90	1.40
HP 050	3	17.37	16.25	8.90	7.18	3.63	1.25
	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
HP 135	1	20.33	18.80	9.71	8.66	4.78	2.78
	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01

Filter element		Absolute filtration S - H - U Series						
Туре	Length	A03	A06	A10	A16	A25		
	1	424.58	319.74	235.17	194.44	163.78		
HP 010	2	281.06	211.25	94.35	75.45	47.26		
HP 011	3	130.14	97.50	43.63	34.82	21.81		
	4	109.39	82.25	36.79	29.37	18.40		
	2	73.00	57.00	28.00	24.00	17.20		
HP 039	3	40.90	36.33	21.88	18.80	11.20		
	4	31.50	28.22	17.22	9.30	6.70		
	1	47.33	34.25	21.50	20.50	14.71		
	2	29.10	25.95	10.04	10.90	5.88		
HP 050	3	20.85	19.50	10.68	8.61	4.36		
	4	14.55	12.90	7.32	6.90	3.69		
	5	9.86	9.34	6.40	4.80	2.50		
	1	29.16	25.33	13.00	12.47	5.92		
HP 135	2	14.28	11.04	7.86	7.90	4.44		
	3	8.96	7.46	4.89	4.16	3.07		

FILTER SIZING Corrective factor

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

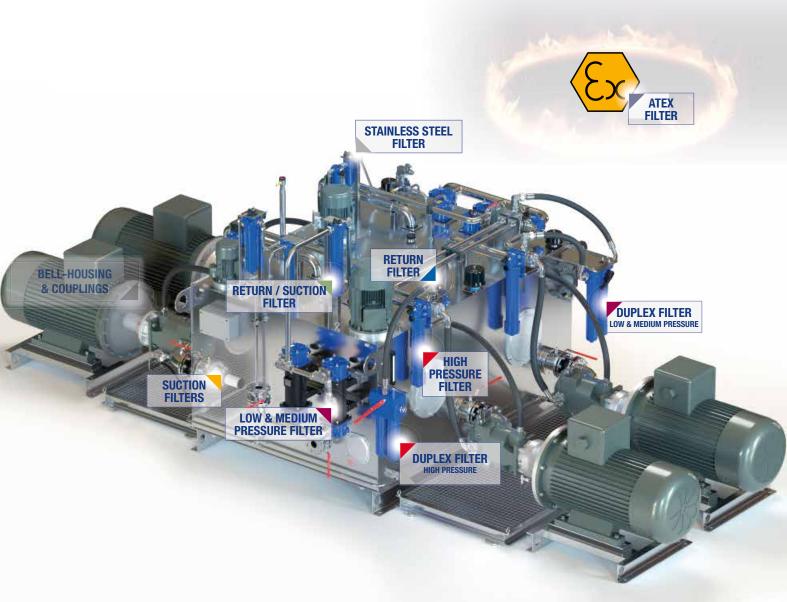
Filter element			Nominal filtration N Series				
Туре	Length	A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
HP 010	2	220.28	165.56	74.08	59.13	37.05	-
HP 011	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
	2	24.25	21.26	11.70	9.09	4.90	1.40
HPX 050	3	17.37	16.25	8.90	7.18	3.63	1.25
	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
	1	20.33	18.80	9.71	8.66	4.78	2.78
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01

Filter element	Filter element		Absolute filtration S - H - U Series							
Туре	Length	A03	A06	A10	A16	A25				
	1	424.58	319.74	235.17	194.44	163.78				
HP 010	2	281.06	211.25	94.35	75.45	47.26				
HP 011	3	130.14	97.50	43.63	34.82	21.81				
	4	109.39	82.25	36.79	29.37	18.40				
	2	73.00	57.00	28.00	24.00	17.20				
HP 039	3	40.90	36.33	21.88	18.80	11.20				
	4	31.50	28.22	17.22	9.30	6.70				
	1	47.33	34.25	21.50	20.50	14.71				
	2	29.10	25.95	10.04	10.90	5.88				
HPX 050	3	20.85	19.50	10.68	8.61	4.36				
	4	14.55	12.90	7.32	6.90	3.69				
	5	9.86	9.34	6.40	4.80	2.50				
	1	29.16	25.33	13.00	12.47	5.92				
HP 135	2	14.28	11.04	7.86	7.90	4.44				
	3	8.96	7.46	4.89	4.16	3.07				

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

Filters sizing software

The web-based software program will allow you to select the most suitable MP Filtri's Filters, in accordance with your process design requirements.


The program will automatically check your input design process prior to propose you the acceptable solutions and create an output in PDF report style format.

The MP Filtri Selection Tool software program is easy to use with a flexible fast design method and provides improved layout formats with full descriptions.

The web-based tool is available at MP Filtri website at following link: https://www.mpfiltri.com/tools/

The related, complete user guide is available as Manual and downloadable from the "Download" section of MP Filtri website, as well as scanning the following QR code

Suction filters are used as safety filters to protect pumps from gross contamination which can cause them to grip.

They are available in 3 families:

- Suction Strainers (STRC and MPAC)
- SFMC and SFSC external filters, for mounting semi-immersed under the oil level
- SFEX ELIXIR® series, for protection of the downstream pump against the coarse contamination

SFMC and SFSC semi-immersed filters, which shut-off oil flow while the filter element is being replaced, replace the butterfly valves usually used for servicing hydraulic pumps.

Suction filters

STRC & MPAC	page 33
SFEX	40
SFMC	51
SFSC	61
INDICATORS	715

STRC & MPAC series

Flow rate up to 1000 l/min

Description

Suction filters

Flow rate up to 1000 I/min

STRC

STRC is a range of suction strainers for protection of the downstream pump against the coarse contamination.

They are placed below the oil level directly connected to the suction line of the pump.

Available features:

- -Female threaded connections up to 3", for a maximum flow rate of 1000 l/min
- Bypass valve, to relieve excessive pressure drop across the filter media

Common application:

- Mobile machines (Construction and Agriculture machines)
- Industrial equipment

MPAC

MPAC is a range of suction strainers for protection of the downstream pump against the coarse contamination.

They are placed below the minimum oil level, directly connected to the suction line of the pump.

The robust design allows the use of these filters in any heavy duty application.

Available features:

- Female threaded connections up to 3", for a maximum flow rate of 1000 l/min
- Magnetic filter (MPAC), to hold the ferrous particles

Common application:

Industrial equipment

Quantity

Series a	Series and size			
STRC	045 - 050	12		
STRC	065 - 070 - 086 - 100	6		
STRC	140 - 150	1		
MPAC	050	12		
MPAC	070 - 100	6		
MPAC	140	1		

Technical data

STRC materials

- 1 Connection: Polyamide, GF reinforced
- 2 Core tube: Tinned steel
- 3 Wire mesh
- 4 End cap: Polyamide, GF reinforced
- 5 Bypass valve: Polyamide, GF reinforced Steel

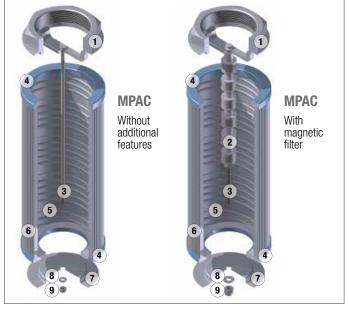
MPAC materials

- 1 Connection: Aluminium
- 2 Magnetic filter
- 3 Tie rod: Galvanized steel
- 4 End cap: Galvanized steel
- 5 Core tube: Galvanized steel
- 6 Filter media: Wire mesh
- 7 Bottom: Galvanized steel
- 8 Washer: Galvanized steel
- 9 Self-locking nut: Galvanized steel Polyamide

Bypass valve

Opening pressure 30 kPa (0.3 bar)

Elements


Fluid flow through the filter element from OUT to IN.

Temperature

From -25 °C to +110 °C

Weights [kg]

Filter series	
STRC	see page 37
MPAC	see page 39

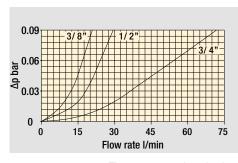
Flow rates [I/min]

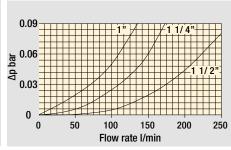
Filter series	Thread I/min
	3/8" 19
	1/2" 28
	3/4" 67
	1" 126
CTDO O MADAO	1 1/4" 167
STRC & MPAC	1 1/2" 258
	2" 480
	2 1/2" 854
	2" 480
	3" 995

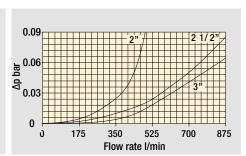
Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

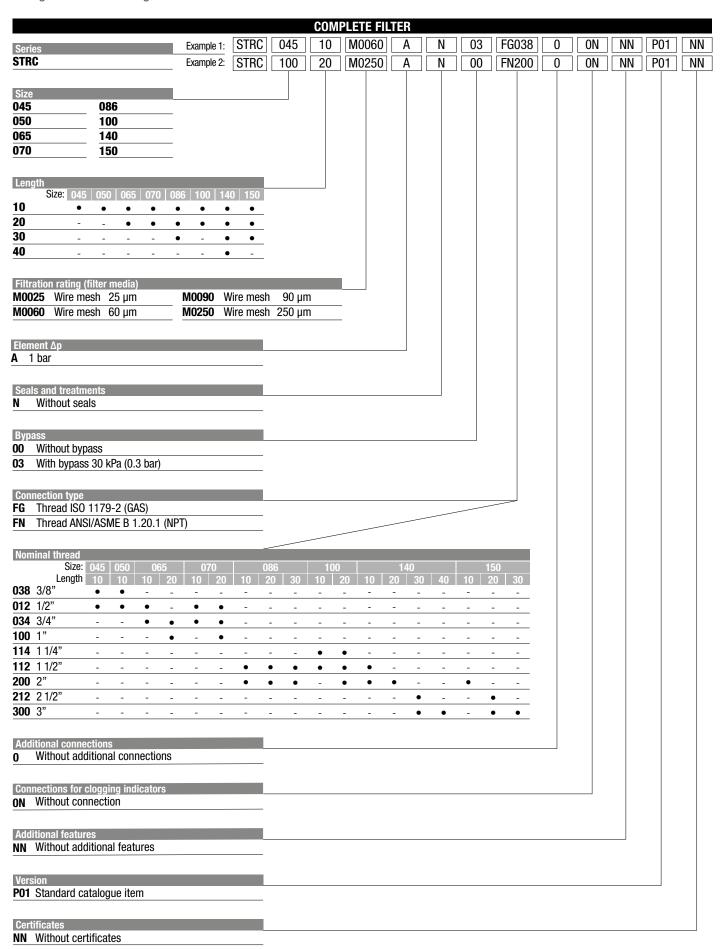

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Filter series	00 - without bypass	03 - with bypass
STRC	•	•
MPAC	•	-
	OUT T	OUT


Hydraulic symbols

Pressure drop

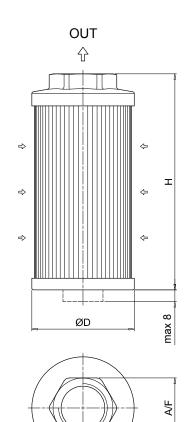
Filters pressure drop $\Delta \boldsymbol{p}$ in function of connection type



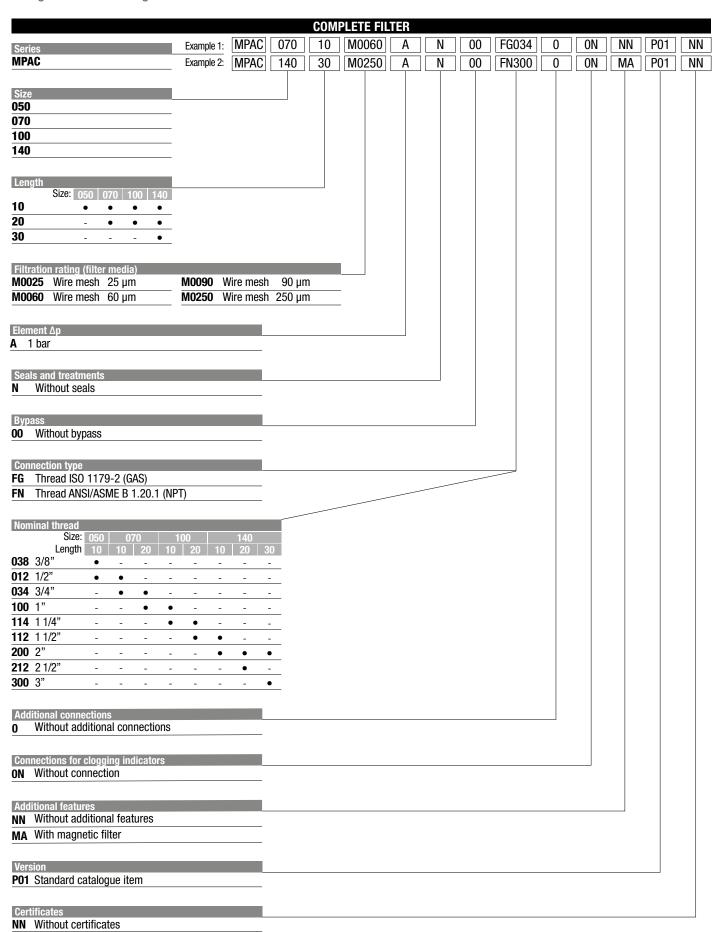
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Filter family	Δ p :	max
Suction	0.08 bar	1.15 psi

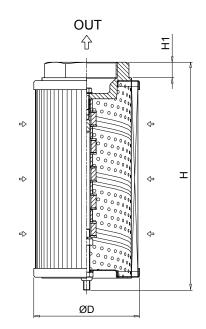


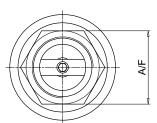
(36)



Dimensions

STRC							
Size	ØD [mm]	Length	Nominal thread		H [mm]	A / F [mm]	Weight [kg]
045	46	10	3/8" 1/2"		105	20	0.19
050	52	10	3/8" 1/2"		79	30	0.11
065	65	10 20	1/2" 3/4" 3/4" 1"		110 144		0.22 0.24
070	70	10	1/2" 3/4" 1/2" 3/4"	1"	95	41	0.18 0.24
086	86	10 20 30	1 1/2" 2" 1 1/2" 2" 1 1/2" 2"		143 201 261		0.33 0.43 0.53
100	99	10 20	1 1/4" 1 1/2" 1 1/4" 1 1/2"	2"	137 227	69	0.47 0.58
140	120	10 20	1 1/2" 2" 2"		160 262		0.70 0.94
140	40 130	30 40	2 1/2" 3"		272 330	101	1.10 1.17
150	150	10 20	2" 2 1/2"		150 212	70 90	0.34
		30	3"		272	100	0.40





(38)

Dimensions

MPAC									
Size	ØD [mm]	Length	Nominal thread	H [mm]	H1 [mm]	A/F [mm]	Weight [kg]		
050	50	10	3/8"	98	16	28	0.17		
		10	1/2"	113			0.27		
070	70	70 3/4"	115			0.36			
070	70		3/4"	3/4"	18	42	0.39		
		20		1"	100		10	0.35	
		10	ı	145			0.54		
100	99	10	1 1/4"	148			0.63		
100	99	20	1 1/4	239	20	60	0.95		
		1 1/2"	200			0.91			
		10	1 1/2	174			0.98		
		10	2"	162	13	80	1.00		
140	D 136	20		272	10	00	1.60		
. 10	100		2 1/2"	281	20	90	1.67		
		30	2"	322	13	80	1.60		
		00	3"	335	22	106	1.93		

Protect the performance of your system with MYclean.

Quality and efficiency are fundamental for MP Filtri:
this exclusive new filter element possesses polygon shape geometry and specific seal that ensures only original spare parts can be used - ensuring correct operation and higher system reliability.

With exclusive filter element you are sure that only MP Filtri filter elements can be used, ensuring the best cleaning level of the oil due to the use of originals filter elements.

Safety of constant quality protection & reliability

The products identified as SFEX are protected by:

- Italian Patent n° 102014902261205
- Oanadian Patent n° 2,937,258
- European Patent n° 3 124 092 B1
- US Patent n° 20170030384 A1

SFEX series

Flow rate up to 100 I/min

Description Technical data

Suction filters

Flow rate up to 100 l/min

SFEX are range of suction filters for protection of the downstream pump against the coarse contamination.

They are placed below the minimum oil level, directly connected to the suction line of the pump in-line mounted.

Available features:

- Female threaded connections up to 1 1/4" and SAE connections up to 1 5/8", for a maximum flow rate of 100 l/min
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical, axial and radial vacuum gauges
- MYclean interface connection for the filter element, to protect the product against non-original spare parts
- External protective wrap, to optimize the flow through the element and to save the element efficiency against non-proper handling

Common application:

- Mobile machines
- Industrial equipment

Filter housing materials

- Head: Aluminium
- Bypass valve: Polyamide Steel
- Bowl: Polyamide

Bypass valve

Opening pressure 30 kPa (0.3 bar) ±10%

Elements

Fluid flow through the filter element from OUT to IN

Seals

Standard NBR series A

Temperature

From -25 °C to +110 °C

Note

SFEX filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

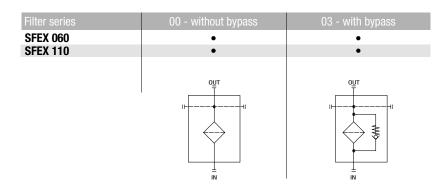
Filter series	ries Weights [kg] Volumes [dm³]			nes [dm³]
	Length 1		Length 1	2
SFEX 060	1.00	1.15	0.60	0.80
SFEX 110	1.90	2.10	1.60	2.00

Flow rates [I/min]

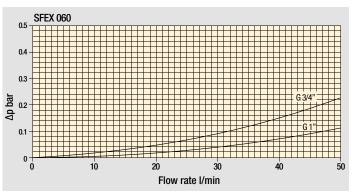
		Filter element design - N Series						
Filter series	Length		M0060	M0090	M0250	P0010	P0025	
CEEV OCO	10		31	33	33	13	20	
SFEX 060	20		34	35	35	24	30	

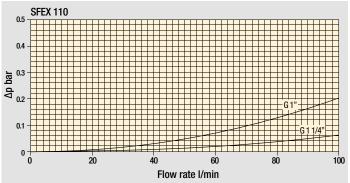
		Filter element design - N Series					
Filter series	Length	M0060	M0090	M0250	P0010	P0025	
SFEX 110	10	93	96	96	48	53	
SLEY III	20	98	99	99	60	65	

Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

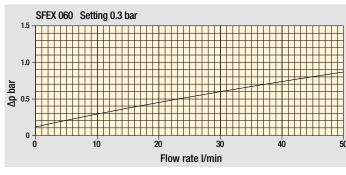

The reference fluid has a kinematic viscosity of 30 mm 2 /s (cSt) and a density of 0.86 kg/dm 3 .

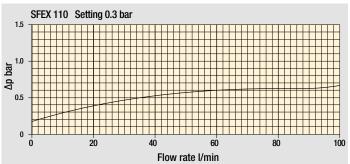
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


Please, contact our Sales Department for further additional information.



Hydraulic symbols

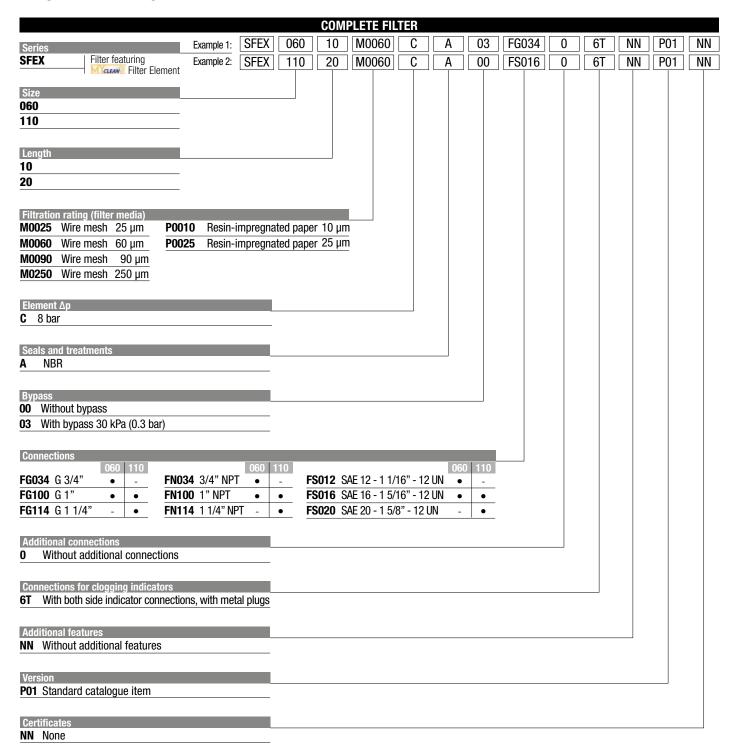



$\begin{array}{c} Pressure \ drop \\ Filter \ housings \ \Delta p \ pressure \ drop \end{array}$

Bypass valve pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

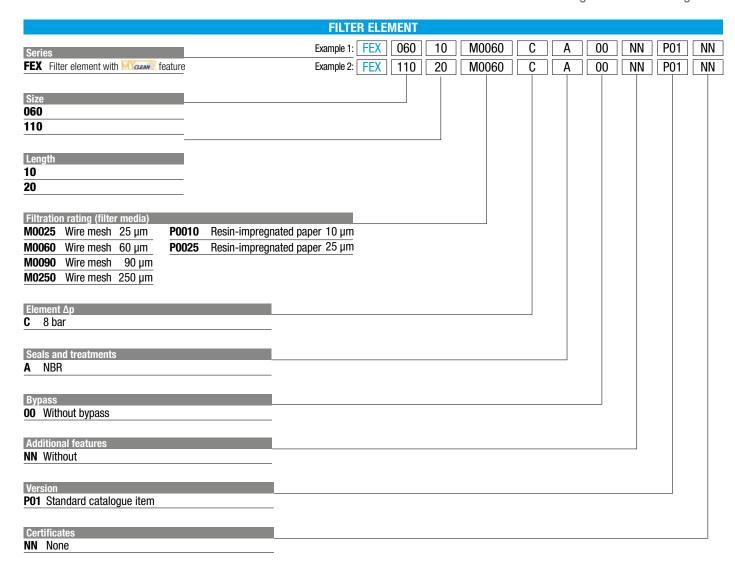
Corrective factors "Y" for filter element Δp calculation


Filter element					filtration P : A = 1 bar		
Туре	Length	P0010	P0025	M0025	M0060	M0090	M0250
FEV 000	10	4.58	3.22	1.02	0.89	0.63	0.63
FEX 060	20	1.97	1.38	0.62	0,45	0.29	0.29
EEV 110	10	1.33	1.12	0.22	0.18	0.14	0.14
FEX 110	20	0.90	0.76	0.15	0.10	0.09	0.09

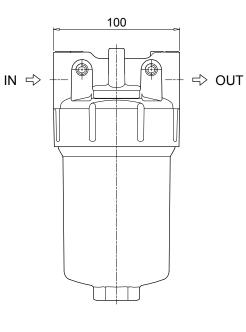
See page 22 for the complete information regarding filter element Δp calculation.

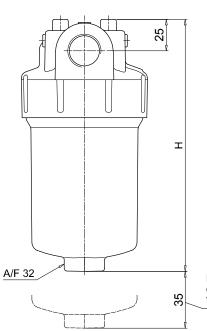
Maximum total pressure drop (Δp max) allowed by a new and clean filter

Filter family	Δρ ι	max
Suction	0.08 bar	1.15 psi

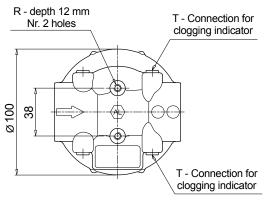


	CLOGGING INDICATORS See page					
VEB	Electrical vacuum indicator	VVB	Axial pressure gauge			
VLB	Electrical / visual vacuum indicator	VVS	Radial pressure gauge			


(44)



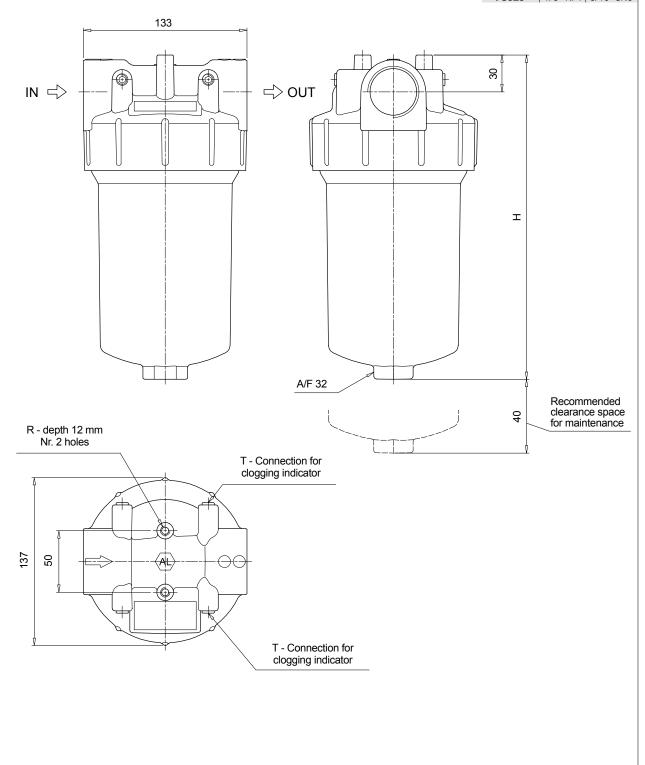
Dimensions


Filter length	H [mm]
10	202
20	265

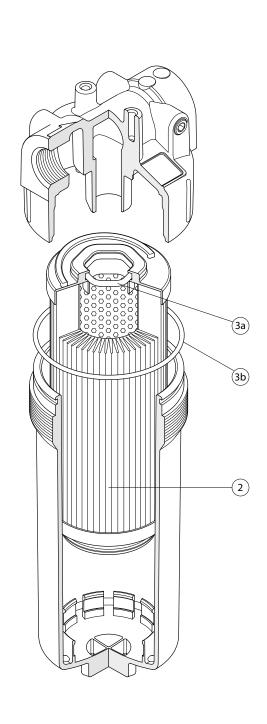
Connections	Т	R
FG034	G 1/8"	M6
FG100	G 1/8"	M6
FN034	1/8" NPT	1/4" UNC
FN100	1/8" NPT	1/4" UNC
FS012	1/8" NPT	1/4" UNC
FS016	1/8" NPT	1/4" UNC



Recommended clearance space for maintenance



(46)


Dimensions

Connections	Т	R
FG100	G 1/8"	M8
FG114	G 1/8"	M8
FN100	1/8" NPT	5/16" UNC
FN114	1/8" NPT	5/16" UNC
FS016	1/8" NPT	5/16" UNC
FS020	1/8" NPT	5/16" UNC

Order number for spare parts

Item:	Q.ty: 1 pc.	Q.ty: 1 pc. (3) (3a ÷ 3b)
Filter series	Filter element	Seal Kit code number NBR
SFEX 060	See order	02050771
SFEX 110	table	02050772

SFMC 250 series

Flow rate up to 160 I/min

SFMC 250 GENERAL INFORMATION

Description

Suction filters

Flow rate up to 160 l/min

SFMC 250 is a range of suction filters with integrated shut-off valve for protection of the downstream pump against the coarse contamination.

They are placed below the minimum oil level, directly connected to the suction line of the pump.

They can be fitted on the side or below the tank, allowing a more flexible design of the tank.

The shut-off valve closes automatically when the cover is removed, allowing the filter element replacement without the fluid drop.

Available features:

- -Female threaded connections up to 1" and flanged connections up to 1 1/2", for a maximum flow rate of 160 l/min
- Multiple connections, to connect several suction lines
- Bypass valve, to relieve excessive pressure drop across the filter media
- Magnetic filter, to hold the ferrous particles
- Visual, electrical and electronic clogging indicators

Common application:

- Mobile machines
- Industrial equipment

Technical data

Filter housing materials

- Filter body: Aluminium
- Cover: Polyamide, GF reinforced
- Valve: Polyamide, GF reinforced Steel
- Anti-Emptying valve: Steel

Bypass valve

Opening pressure 30 kPa (0.3 bar) ±10%

Elements

Fluid flow through the filter element from IN to OUT

Seals

- Standard NBR series A or W
- Optional FPM series V or Z

Temperature

From -25 °C to +110 °C

Note

SFMC 250 filters mounting, see the drawings on page 54 and following.

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm³]
SFMC 250	2.8	2.3
SFMC 250	2.8	2.4

GENERAL INFORMATION SFMC 250

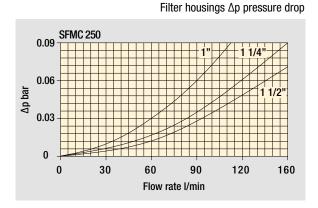
Flow rates [I/min]

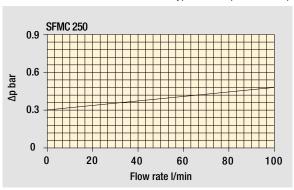
	Filter element design - N Series						
Filter series	M002	5 M0060	M0090	M0250	P0010	P0025	
SFMC 250	147	151	155	160	85	132	

Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

Filter series	0 - without additional connections	1 - with smaller additional connections	0 - without additional connections	1 - with smaller additional connections
SFMC 250 without bypass	•	•	-	-
SFMC 250 with bypass	-	-	•	•
	OUT TO THE PROPERTY OF THE PRO	Aux OUT OUT OUT III	OUT TO THE PERSON OF THE PERSO	AUX OUT OUT OUT

Pressure drop

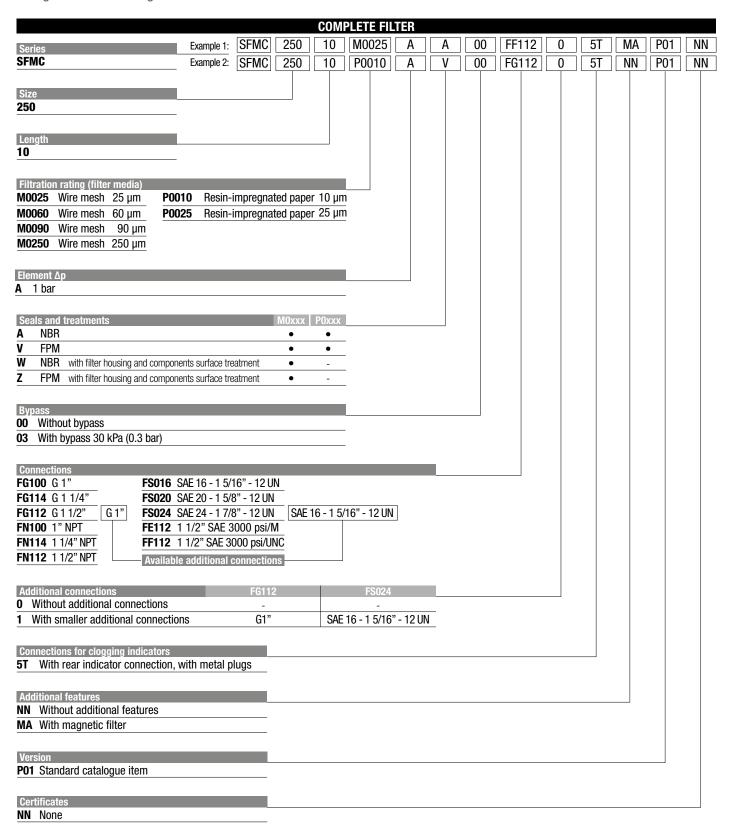
Bypass valve pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Corrective factors "Y" for filter element $\Delta \boldsymbol{p}$ calculation

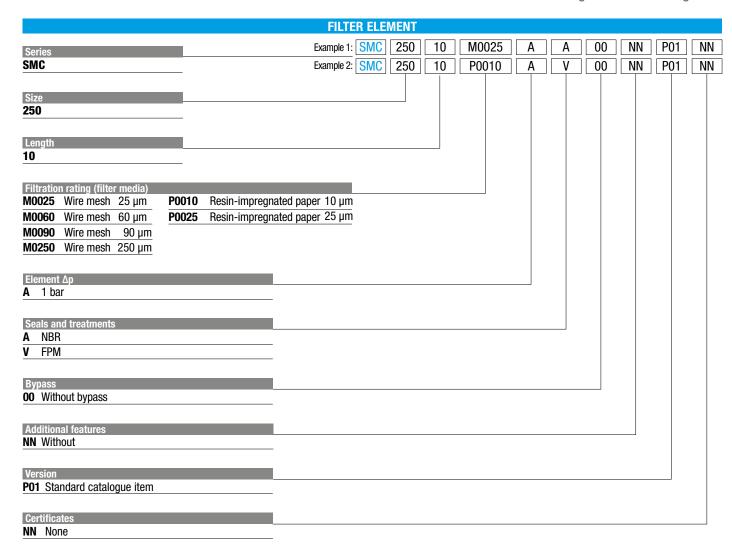
Filter element		Nominal filtration Collapse $\Delta P: A = 1$ bar					
Туре	Length	P0010	P0025	M0025	M0060	M0090	M0250
SMC 250	10	0.65	0.20	0.10	0.08	0.05	0.03

See page 22 for the complete information regarding filter element Δp calculation.

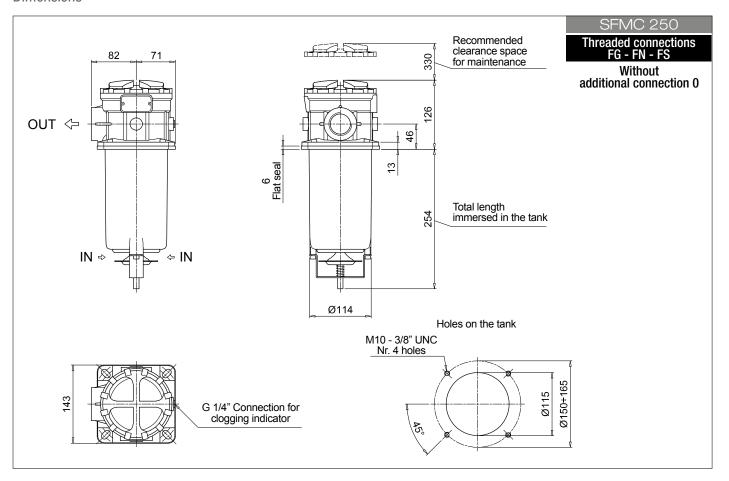

Maximum total pressure drop (Δp max) allowed by a new and clean filter

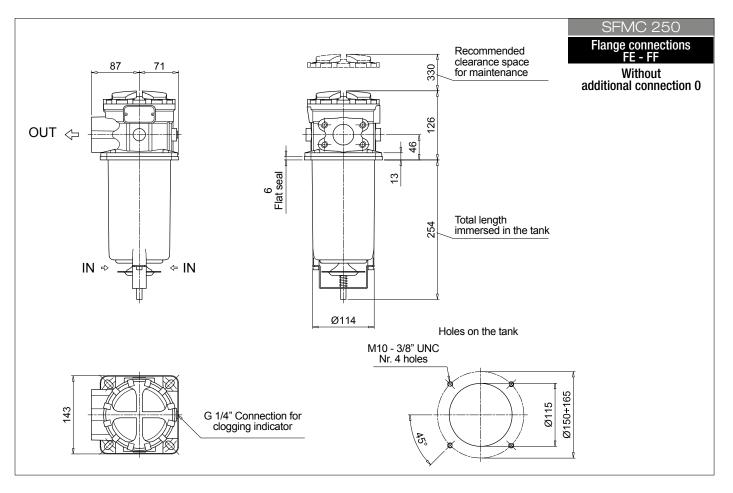
Filter family	Δp max	
Suction	0.08 bar	1.15 psi

SFMC 250


Designation & Ordering code

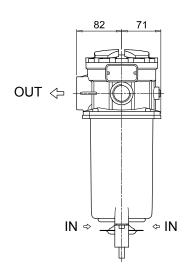
CLOGGING INDICATORS			See page 715	
VEA	Electrical vacuum indicator	VVA	Axial vacuum gauge	
VLA	Electrical / visual vacuum indicator	VVR	Radial vacuum gauge	

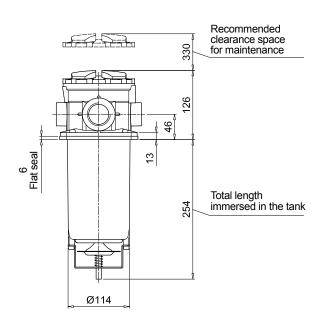


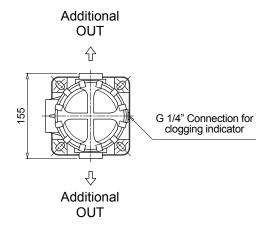


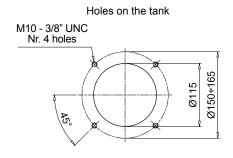
SFMC 250

Dimensions

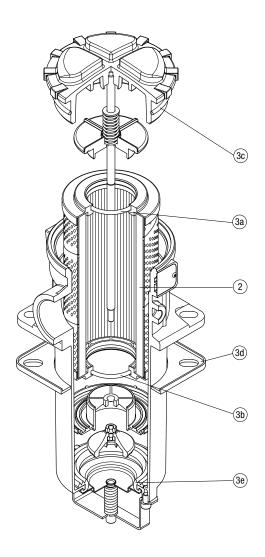



56


Dimensions


SFMC 250

With smaller additional connection 1



SFMC 250 SPARE PARTS

Order number for spare parts

Item:	Q.ty: 1 pc.		1 pc. (3a ÷ 3e)
Filter series	Filter element	Seal Kit co NBR	de number FPM
SFMC 250	See order table	02050586	02050587

SFSC series

Flow rate up to 700 I/min

SFSC GENERAL INFORMATION

Description

Suction filters

Flow rate up to 700 I/min

SFSC is a range of suction filters with integrated shut-off valve for protection of the downstream pump against the coarse contamination.

They are placed below the minimum oil level, directly connected to the suction line of the pump.

They can be fitted on the side or below the tank, allowing a more flexible design of the tank.

The shut-off valve closes automatically when the cover is removed, allowing the filter element replacement without the fluid drop.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 700 I/min
- Optional hose fitting installed, to connect the suction line without the use of flanges
- Magnetic filter, to hold the ferrous particles
- Plastic and metal handle, to close the shut-off valve before the cover removal
- Electrical switch, to signal the closed shut-off valve
- Visual, electrical and electronic clogging indicators

Common application:

Industrial equipment

Technical data

Filter housing materials

- Housing:

Anodized Aluminium

Steel (chemical heat treatment): only for SFSC 535 - 540

- Cover:

Anodized Aluminium

Steel (chemical heat treatment): only for SFSC 535 - 540

- Optional flange: Anodized Aluminium

Elements

Fluid flow through the filter element from IN to OUT

Seals

- Standard NBR series A or W
- Optional FPM series V or Z

Temperature

From -25 °C to +110 °C

Note

SFSC filters mounting, see the drawings on page 66 and following

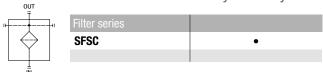
Weights [kg] and volumes [dm3]

Filter series	Weights [kg]	Volumes [dm³]
SFSC 500	4.2	1.8
SFSC 503	6.2	2.9
SFSC 504	7.2	4.0
SFSC 505	4.3	1.6
SFSC 510	5.4	2.1
SFSC 535	16	4.4
SFSC 540	18.6	6.5

GENERAL INFORMATION SFSC

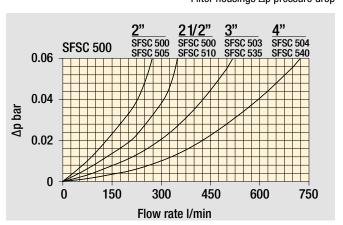
Flow rates [I/min]

		Filter element design - N Series
Filter series	M0025	M0060 M0090 M0250
SFSC 500	219	234
SFSC 503	325	390
SFSC 504	484	543
SFSC 505	199	221
SFSC 510	259	282
SFSC 535	439	479
SFSC 540	644	688


Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

PRESSURE DROP

Filter housings Δp pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

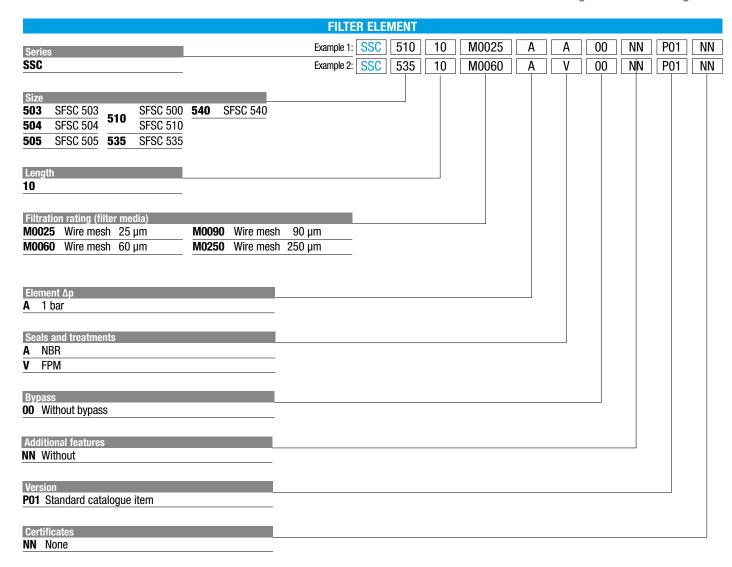
Corrective factors "Y" for filter element Δp calculation

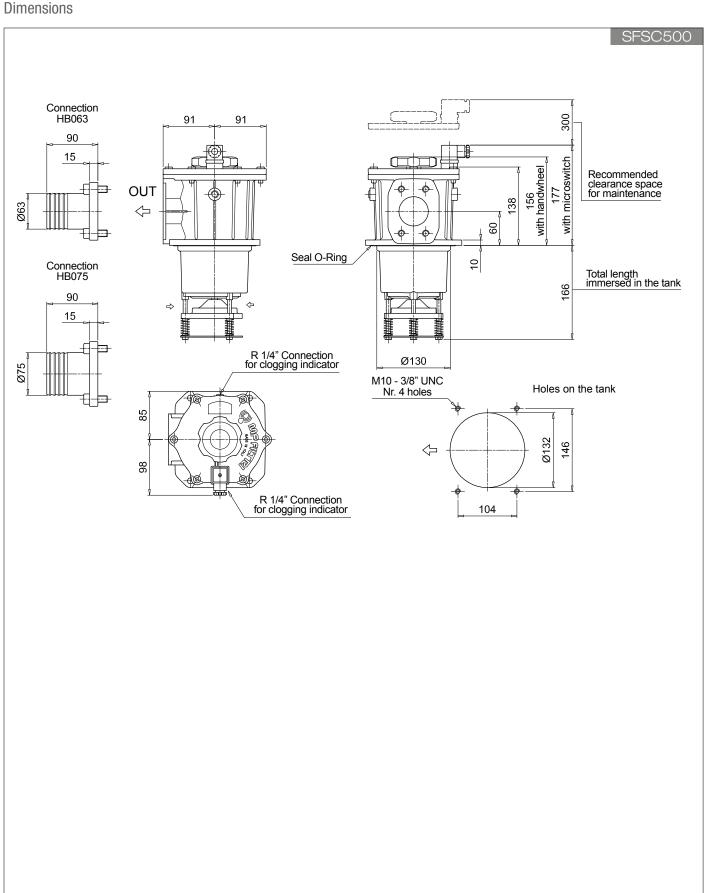
Filter element		Nominal filtration Collapse $\Delta P: A = 1$ bar								
Туре	Length	P0010	P0025	M0025	M0060	M0090	M0250			
SSC 503	10	-	-	0.17	0.11	0.11	0.11			
SSC 504	10	-	-	0.11	0.08	0.08	0.08			
SSC 505	10	-	-	0.23	0.18	0.18	0.18			
SSC 510	10	-	-	0.18	0.14	0.14	0.14			
SSC 535	10	-	-	0.08	0.05	0.05	0.05			
SSC 540	10	-	-	0.05	0.04	0.04	0.04			

See page 22 for the complete information regarding filter element Δp calculation.

Maximum total pressure drop (Δp max) allowed by a new and clean filter

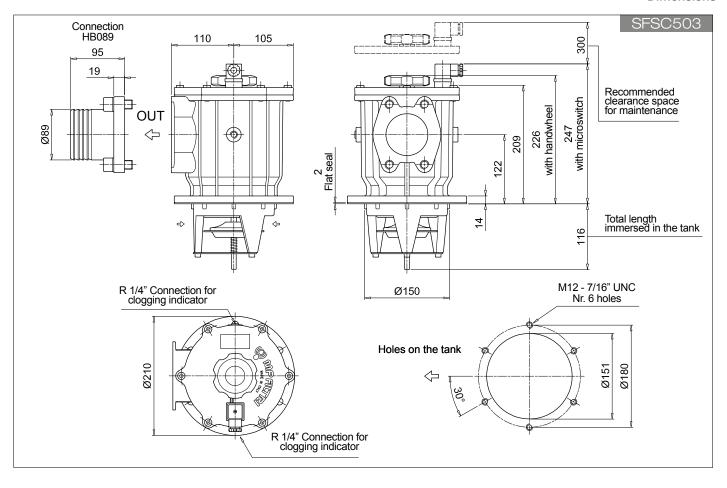
Filter family	Δp max					
Suction	0.08 bar	1.15 psi				

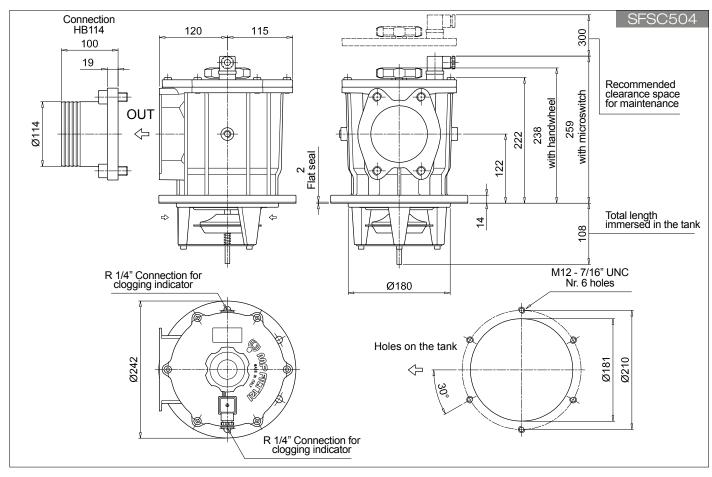



					PLETE F										
eries	Example 1:		500	10	M0025	-	W			FE200	0	6T	MA	P01	N
FSC	Example 2:	SFSC	535	10	M0060	A	V		00	HB089	0	9T	MC	P01	N
ize 00 503 504 505 510 535	540														
ength															
0															
"Hertion wating (filter madic)					.										
Filtration rating (filter media) 10025 Wire mesh 25 µm	M0090 V	Vire mesh	90 μn	1											
10060 Wire mesh 60 µm	M0250 V				_										
Tomont An		_													
Element Δp 1 bar															
Seals and treatments															
NBR															
FPM NBR with components surf	face treatment														
FPM with components surf															
Trini mar compensite can	add troutmont														
Bypass															
O Without bypass															
											.				
Connections .	500 505 510 503-	535 504-5	40			5	00 505	510	503-53	5 504-540	0				
E200 2" SAE 3000 psi/M	• •	-	HB0	63 Hos	e barb Ø 63	mm	• •	-	-	-	_				
E212 2 1/2" SAE 3000 psi/M	• - • -				e barb Ø 75		• -	•	-	-	_				
E400 3" SAE 3000 psi/M E400 4" SAE 3000 psi/M	•	-			e barb Ø 89 e barb Ø 11		- -	-	•	-	-				
F200 2" SAE 3000 psi/UNC	 • •		<u>nd i</u>	14 1105	וו ש מוט ש	4 111111	- -	-		•	-				
F212 2 1/2" SAE 3000 psi/UNC		-	_												
F300 3" SAE 3000 psi/UNC	•	-													
F400 4" SAE 3000 psi/UNC		•													
M. J.															
Additional connections Without additional connecti	ions														
Trialout additional common	10110														
Connections for clogging indicate	ors														
T With both side indicator con	nections with m	etal nluns		500-503	3-504-540 •	505-5	10-535 -								
T With multiple indicator conn					-		•								
	,	J J-			,										
Additional features															
				500-5	503-504 •	505-510	-535-5 ●	40							
A With magnetic filter	mide handwheel				•		-								
					-		•								
1B With magnetic filter + polya 1C With magnetic filter + micro			ubool		•		-								
MB With magnetic filter + polyaMC With magnetic filter + microMD With magnetic filter + micro	oswitch + polyam		Mileei											1	
MB With magnetic filter + polya MC With magnetic filter + micro MD With magnetic filter + micro	oswitch + polyam		Wileel		•		-								
MB With magnetic filter + polya MC With magnetic filter + micro MD With magnetic filter + micro ME With magnetic filter + micro	oswitch + polyam		Wileei				-								
ID With magnetic filter + micro IE With magnetic filter + micro Version	oswitch + polyam		wileei				-								
MB With magnetic filter + polya MC With magnetic filter + micro MD With magnetic filter + micro ME With magnetic filter + micro	oswitch + polyam		wileei				-								
IB With magnetic filter + polya IC With magnetic filter + micro ID With magnetic filter + micro IE With magnetic filter + micro Version	oswitch + polyam		Mileei				-								

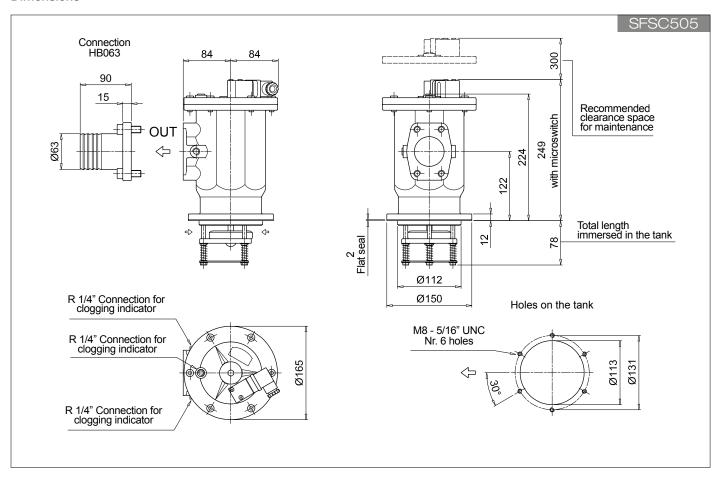
	TORS	See page 715		
VEA	Electrical vacuum indicator	VVA	Axial vacuum gauge	
VLA	Electrical / visual vacuum indicator	VVR	Radial vacuum gauge	

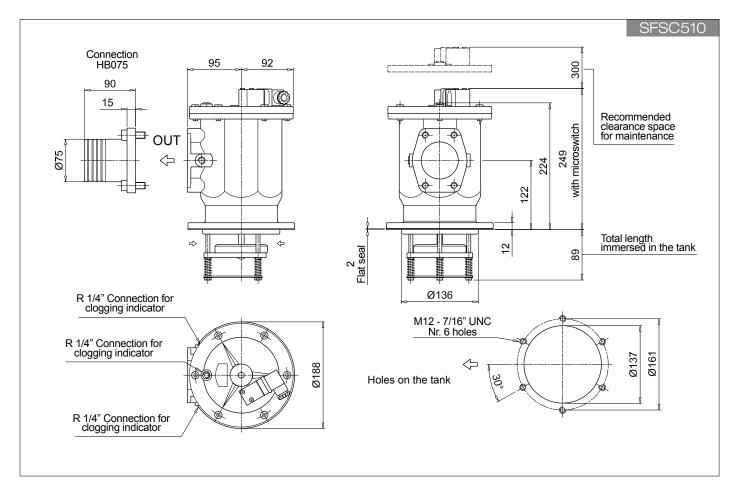
(64)





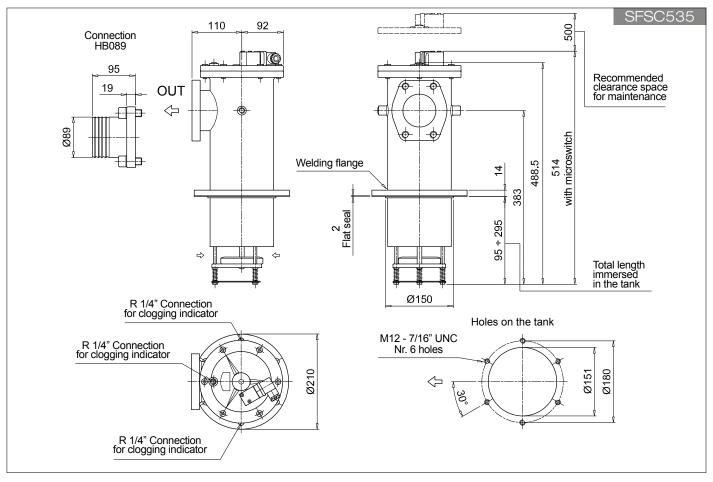
SFSC503 - SFSC504 SFSC

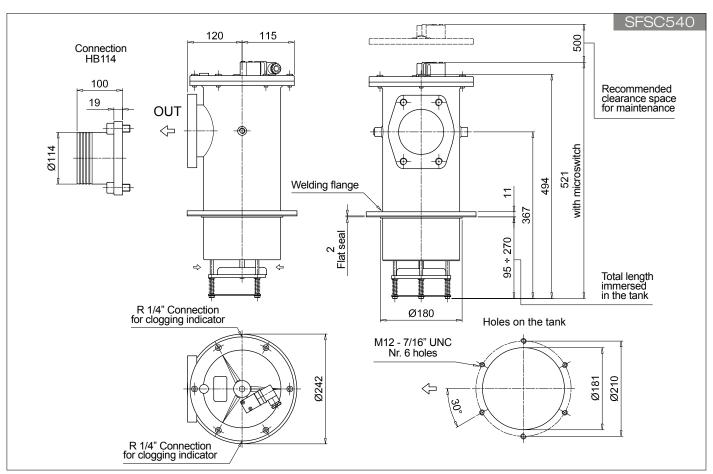

Dimensions



SFSC sfsc505 - Sfsc510

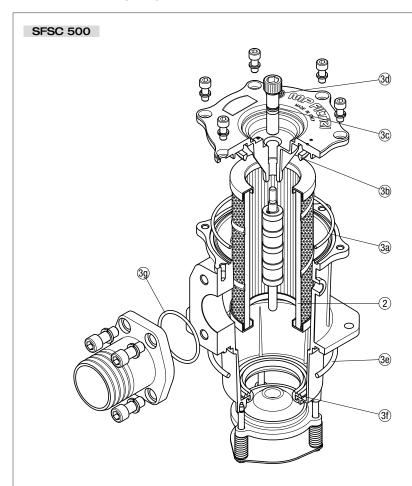
Dimensions

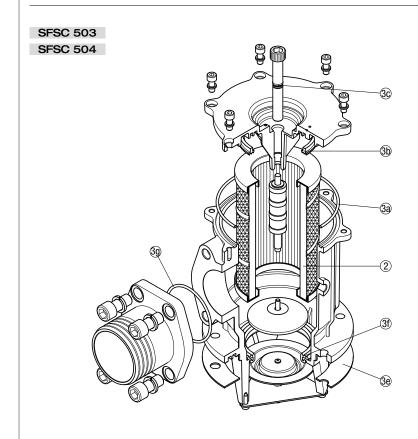




(68)

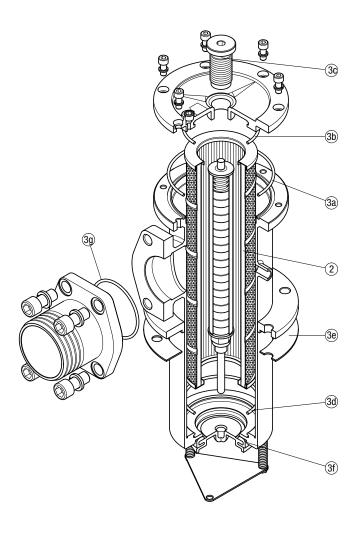
SFSC535 - SFSC540 SFSC


Dimensions

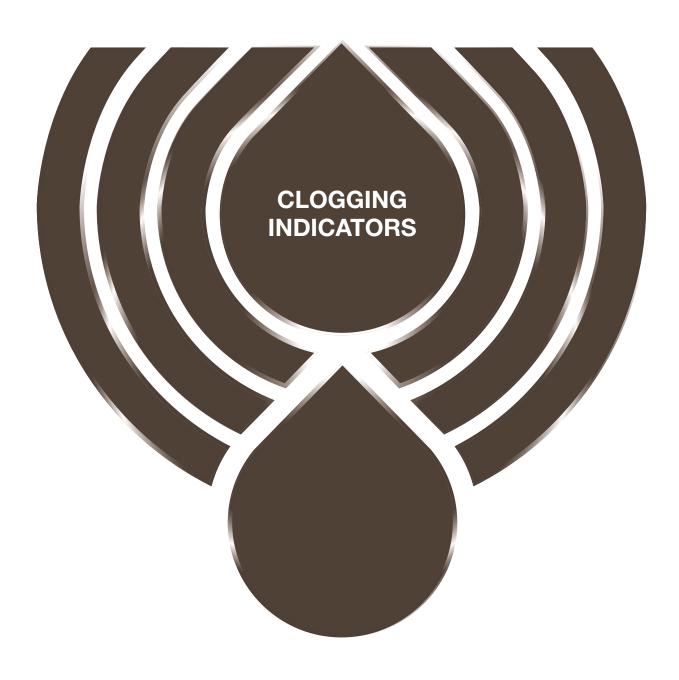


SFSC SPARE PARTS

Order number for spare parts



Item:	Q.ty: 1 pc.	Q.ty: 1 pc. 3 (3a ÷ 3g)					
Filter series	Filter element	Seal Kit coo	de number FPM				
SF2 500	See	02050141	02050142				
SF2 503	order	02050070	02050071				
SF2 504	table	02050072	02050073				


SPARE PARTS SFSC

Order number for spare parts

Item:	Q.ty: 1 pc.		1 pc. (3a ÷ 3g)
Filter series	Filter element	Seal Kit coo	de number FPM
SFSC 505	See	02050043	02050044
SFSC 510	order	02050045	02050046
SFSC 535		02050051	02050052
SFSC 540	table	02050053	02050054

Clogging indicators are devices that check the life time of the filter elements. They measure the pressure drop through the filter element directly connected to the filter housing.

These devices trip when the clogging of the filter element causes a pressure drop increasing across the filter element.

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

The indicator is set to alarm before the element becomes fully clogged.

MP Filtri can supply indicators of the following designs:

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

These type of devices can be provided with a visual, electrical or both signals. The electronic differential pressure clogging indicator is also available. It provides both analogical 4-20 mA output and digital warning (75% of clogging) and alarm (clogging) outputs.


In the following pages you can find a reference guide about the types of clogging indicators available in the different families of MP Filtri's Hydraulic Filtration range of products.

Clogging Indicators

DESIGNATION, ORDERING CODES & TECHNICAL DATA

INDEX

	Page
QUICK REFERENCE GUIDE	710
CLOGGING INDICATORS ORDERING CODES	
SUCTION FILTERS INDICATORS	715
RETURN FILTERS INDICATORS	716
RETURN / SUCTION FILTERS INDICATORS	718
SPIN-ON FILTERS INDICATORS	720
LOW & MEDIUM PRESSURE FILTERS INDICATORS	722
HIGH PRESSURE FILTERS INDICATORS	723
STAINLESS STEEL HIGH PRESSURE FILTERS INDICATORS	724
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE INDICATORS	725
TECHNICAL DATA VACUUM INDICATORS	726
BAROMETRIC (PRESSURE) INDICATORS	728
DIFFERENTIAL PRESSURE INDICATORS	732
PLUGS	743
FLUGO	740

QUICK REFERENCE GUIDE

Ordering codes

Filter family	Filter se	eries	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
	Suction Line	ELIXIR° SFEX060-110	WB20P01 WS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
SUCTION FILTERS	Line	SFMC250	WA20P01 WR20P01	VEA21xA50P01 VEA21xA50P01UL	VLA21xA51P01 VLA21xA52P01 VLA21xA53P01 VLA21xA71P01
	Without bypass	SFSC 500 - 503 - 504 - 505 SFSC 510 - 535 - 540	WA20P01 WR20P01	VEA21xA50P01 VEA21xA50P01UL	VLA21xA51P01 VLA21xA52P01 VLA21xA53P01 VLA21xA71P01
	With bypass 1.75 bar	ELIXIR* RFEX060-080-110-160	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	Without bypass	ELIXIR* RFEX060-080-110-160	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
RETURN FILTERS	With bypass 1.75 bar	MDH 250	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01 DVS12HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01 DES12HA10P01 DES12HA30P01 DES12HA80P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	With bypass 3 bar	MDH 250	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01 DES25HA10P01 DES25HA30P01 DES25HA80P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
ŒΨ	With bypass 1.75 bar	MPFX MPTX MPF MPT MPH	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	With bypass 3 bar With bypass 2.5 bar	MPFX MPTX MPF MPT MPH	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass 4.5 bar	MPLX	DEA20xA50 DVA20xP01 DEM20xx10 DEM20xx20 DVM20xP01 DEM20xx30 DEM20xx30	DEA20xA50P01 DEA20xA50P01UL DEM20xx10P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01
	With bypass 2.4 bar	FRI		DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20VA50P01UL	DLE20xA50P01 DLE20xF50P01 DTA20xF70P01

710

QUICK REFERENCE GUIDE

Ordering codes

Filter family	Filter seri	es	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
	With bypass valve	MRSX 116 - 165 - 166 Suction line	VVB20P01 VVS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
CTION	2.5 bar	MRSX 116 - 165 - 166 Return line	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
RETURN / SUCTION FILTERS	With bypass valve 2.5 bar	LMP 124 MULTIPORT	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVA20xP01 DVM20xP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01 DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20VA50P01UL	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01 DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01
	Suction line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	WB20P01 WS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
SPIN-ON FILTERS	Return line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350 MST 050 - 070 - 100 - 150	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	In-line	MPS 051 - 071 - 101 - 151 MPS 301 - 351 MSH 050 - 070 - 100 - 150	DVA12xP01 DVM12xP01 DVA20xP01 DVM20xP01	DEA12xA50P01 DEM12xAxxP01 DEA20xA50P01 DEM20xAxxP01 DEU20VA50P01UL	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE12xA50P01 DLE12xF50P01 DLE20xF50P01 DLE20xF50P01 DLE20xF50P01 DTA12xF70P01 DTA12xF70P01

Ordering codes

Filter family	Filter s	eries	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
		ELIXIR* LFEX060-080-110-160	DVS25HP01	DES25HA10P01 DES25HA30P01 DES25HA80P01	
JM ERS	With bypass valve 3.5 bar	LMP 110 LMP 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20VA50P01UL	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
LOW & MEDIUM PRESSURE FILTERS	With bypass valve 2.5 bar	LPH 630	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20VA50P01UL	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
	With bypass valve 1.75 bar	LPH 630	DVA12xP01 DVM12xP01 DVS12HP01	DEA12xA50P01 DEM12xx10P01 DEM12xx20P01 DEM12xx30P01 DEM12xx35P01	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01 DTA12xF70P01
		ELIXIR* LFEX060-080-110-160	DVS40HP01	DES40HA10P01 DES40HA30P01 DES40HA80P01	
	Without bypass valve	LMP 110 LMP 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD LPH 630	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01 DEU50VA50P01UL	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01 DTA50xF70P01
	With bypass valve 6 bar	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01 DEU50VA50P01UL	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01
HIGH PRESSURE FILTERS	Without bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA70xP01 DVA95xP01	DEA70xA50P01 DEA95xA50P01 DEA95xA50P01 DEM70xx10P01 DEM70xx20P01 DEM70xx35P01 DEU70VA50P01UL DEM95xx10P01 DEM95xx20P01 DEM95xx30P01 DEM95xx35P01	DLA70xA51P01 DLA70xA52P01 DLA70xA71P01 DLA95xA51P01 DLA95xA52P01 DLA95xA52P01 DLE70xA50P01 DLE70xF50P01 DLE95xA50P01 DLE95xF50P01 DTA70xF70P01 DTA70xF70P01

QUICK REFERENCE GUIDE

Ordering codes

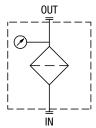
Filter family	Filter seri	es	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01	DEZ50xA50P01	DLZ50xA51P01 DLZ50xA52P01
STEEL RE FILTERS	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01	DEZ70xA50P01 DEZ95xA50P01	DLZ70xA51P01 DLZ70xA52P01 DLZ95xA51P01 DLZ95xA52P01
STAINLESS S HIGH PRESSURE	With bypass valve 6 bar	FZP 039 - 136 FZB 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01
	Without bypass valve	FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEX70xA50P01 DEX95xA50P01	DLX70xA51P01 DLX70xA52P01 DLX95xA51P01 DLX95xA52P01
	With bypass valve 6 bar	FMMX 050	DVA50xP01 DVM50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01	
	Without bypass valve	FMMX 050	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01	
TENTIALLY OSPHERE	With bypass valve 6 bar	FZP 039 - 136	DVX50xP01 DVY50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01	
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	Without bypass valve	FZP 039 - 136	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01	
	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01		
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01		

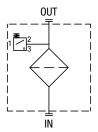
Suitable indicator types

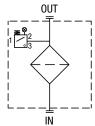
V ACUUM INDICATORS

Vacuum indicators are used on the Suction line to check the efficiency of the filter element.

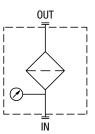
They measure the pressure downstream of the filter element.

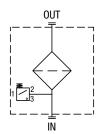

Standard items are produced with R 1/4" EN 10226 connection.

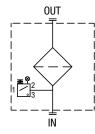

Available products with R 1/8" EN 10226 to be fitted on MPS series.


Vacuum indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "V".

Example:




B AROMETRIC (PRESSURE) INDICATORS

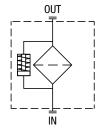

Pressure indicators are used on the Return line to check the efficiency of the filter element. They measure the pressure upstream of the filter element.

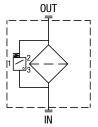
Standard items are produced with R 1/8" EN 10226 connection.

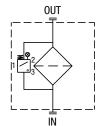
Barometric (pressure) indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "B"

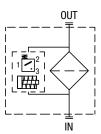
Example:

B BVA14P01

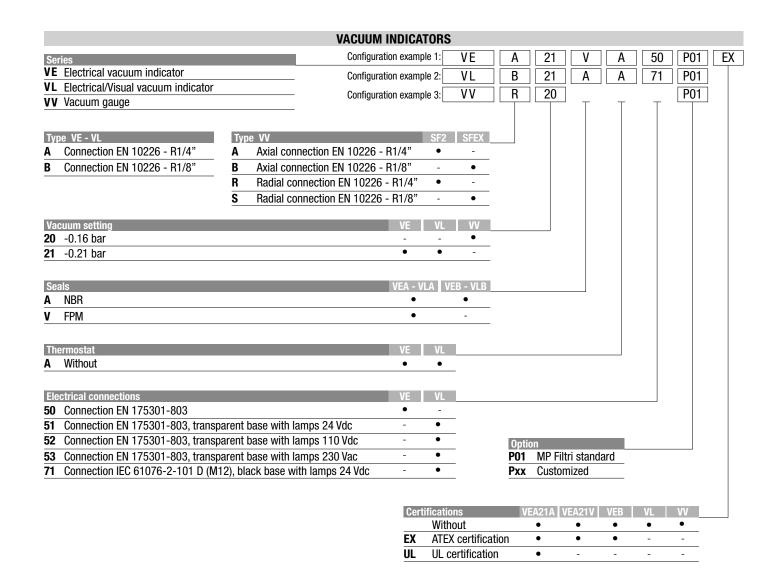

D IFFERENTIAL PRESSURE INDICATORS

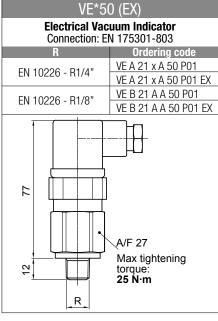

Differential pressure indicators are used on the Pressure line to check the efficiency of the filter element.


They measure the pressure upstream and downstream of the filter element (differential pressure).


Standard items are produced with special connection G 1/2" size.

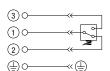
Also available in Stainless Steel models. Differential pressure indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "D"




Example

D DVA20xP01

Designation & Ordering code


Technical data

Hydraulic symbol

Electrical symbol

- Certification: ATEX, IECEx
- Certification included in EX version

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver - Seal: VEA: NBR/FPM

Technical data

- Vacuum setting: 0.21 bar ±10% - Max working pressure: 10 bar - Proof pressure: 15 bar

- Working temperature: From -25 °C to +80 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

VEB: NBR

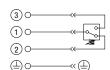
- Degree of protection: IP65 according to EN 60529

Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 5 A / 14 Vdc 4 A / 30 Vdc 5 A / 125 Vac

4 A / 250 Vac

- CE certification


- Available Atex product: II 1GD Ex ia IIC Tx Ex ia IIIC Tx °C X

VEA50 UL **Electrical Vacuum Indicator** Connection: EN 175301-803 Ordering code EN 10226 - R1/4" VE A 21 A A 50 P01 UL 77 VF 27

Hydraulic symbol

Electrical symbol

- Certification: UL
- Certification included in EX version

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver VEA: NBR/FPM - Seal: VEB: NBR

Technical data

- Vacuum setting: 0.21 bar ±10% - Max working pressure: 10 bar - Proof pressure: 15 bar

From -25 °C to +80 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 - Degree of protection: IP65 according to EN 60529

Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 5 A / 14 Vdc 4 A / 30 Vdc 5 A / 125 Vac

4 A / 250 Vac

- CE certification

II 1GD Ex ia IIC Tx Ex ia IIIC Tx °C X - Available Atex product:

VL*51 - VL*52 - VL*53

R

Max tightening

torque:

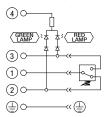
25 N⋅m

Electrical/Visual Vacuum Indicator Connection: EN 175301-803

- 51: Transparent base with lamps 24 Vdc
- 52: Transparent base with lamps 110 Vdc
- 53: Transparent base with lamps 230 Vac

K	Uraering coae
EN 10226 - R1/4"	VL A 21 x A xx P01
EN 10226 - R1/8"	VL B 21 A A xx P01
4	
	A/F 27 Max tightening

torque:


25 N·m

726

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

- Base: Transparent polyamide Brass - Polvamide - Contacts: VLA: NBR/FPM - Seal: VLB: NBR

Technical data

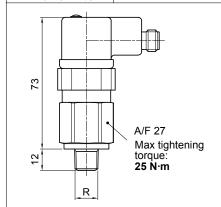
- Vacuum setting: 0.21 bar ±10% - Max working pressure: 10 bar - Proof pressure: 15 har

- Working temperature: From -25 °C to +80 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

- Degree of protection: IP65 according to EN 60529

Electrical data

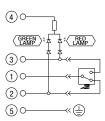
- Electrical connection: EN 175301-803


- Type 51 110 Vdc 230 Vac - Lamps 24 Vdc - Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc 1 A / 230 Vac

12

Technical data

Electrical/Visual Vacuum Indicator Connection IEC 61076-2-101 D (M12), black base with lamps 24 Vdc


Connections	Indicator code
EN 10226 - R1/4"	VL A 21 x A 71 P01
EN 10226 - R1/8"	VL B 21 A A 71 P01

Hydraulic symbol

Electrical symbol

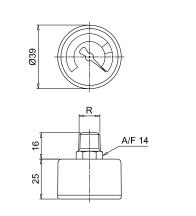
Materials

- Body: Brass

- Base: Black polyamide - Contacts: Silver VLA: NBR/FPM - Seal: VLB: NBR

Technical data

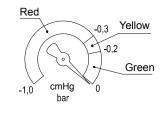
0.21 bar ±10% - Vacuum setting: - Max working pressure: 10 bar - Proof pressure: 15 bar


From -25 °C to +80 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids

HFB and HFC according to ISO 2943 - Degree of protection: IP65 according to EN 60529

Electrical data

IEC 61076-2-101 D (M12) - Electrical connection: - Lamps 24 Vdc (black base) - Resistive load: 0.4 A / 24 Vdc


VVA - VVB **Axial Vacuum Gauge** Ordering code EN 10226 - R1/4" VVA 20 P01 EN 10226 - R1/8" VVB 20 P01

Hydraulic symbol

Dial scale

Conversion to SI units

[cmHg]	[bar]
-12	-0.16
-18	-0.24
-76	-1.01

Materials

- Case: Black plastic - Window: Clear plastic - Dial: White plastic - Pointer: Black plastic - Pressure connection: Cu-alloy

- Pressure element: Bourdon tube Cu-alloy soft soldered, C type

- Movement: Cu-alloy

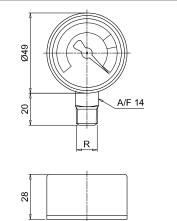
Technical data

- Max working pressure: Steady: -0.7 bar

Fluctuating: -0.6 bar Short time: -1.0 bar

Ambienti from -40 °C to +60 °C - Working temperature:

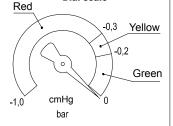
Fluid max + 60 °C


Storage from -40 °C to +60 °C - Compatibility with fluids: Mineral oils, Synthetic fluids

HFB and HFC according to ISO 2943 - Accuracy: Class 2.5 according to EN 13190

- Degree of protection: IP31 according to EN 60529

V V D - V V	o
Radial Vacuum	Gauge


R	A/F	Ordering code
EN 10226 - R1/4"	14	VVR 20 P01
EN 10226 - R1/8"	11	VVS 20 P01

Hydraulic symbol

Dial scale

Conversion to SI units

[cmHg]	[bar]
-12	-0.16
-18	-0.24
76	1.01

Materials

- Case Black plastic - Window: Clear plastic - Dial: White plastic Black plastic - Pointer: - Pressure connection: Cu-alloy

Bourdon tube Cu-alloy soft soldered, C type - Pressure element:

- Movement: Cu-alloy

Technical data

- Accuracy:

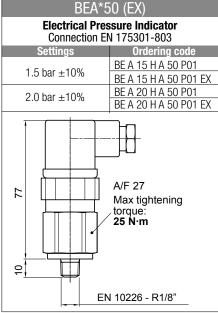
- Max working pressure: Steady: -0.7 bar Fluctuating: -0.6 bar

Short time: -1.0 bar

Ambienti from -40 °C to +60 °C - Working temperature:

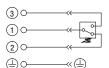
Fluid max + 60 °C

Storage from -40 °C to +60 °C


- Compatibility with fluids: Mineral oils, Synthetic fluids

HFB and HFC according to ISO 2943 Class 2.5 according to EN 13190 - Degree of protection: IP31 according to EN 60529

ROMETRIC (PRESSURE) INDICATORS


Dimensions

Hydraulic symbol

Electrical symbol

- Certification: ATEX, IECEx
- Certification included in EX version

Materials

- Body: Brass - Base: Black polyamide

- Contacts: Silver - Seal: **HNBR**

Technical data

- Max working pressure: 40 bar - Proof pressure: 60 bar

From -25 °C to +80 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

- Degree of protection: IP65 according to EN 60529

Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 5 A / 14 Vdc

4 A / 30 Vdc 5 A / 125 Vac 4 A / 250 Vac

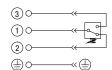
- CE certification

- Available Atex product: I M1 Ex ia I Ma

II 1GD Ex ia IIC Tx Ex ia IIIC Tx °C X

BEA*50 UL **Electrical Pressure Indicator** Connection EN 175301-803 Ordering code 1.5 bar ±10% BE A 15 H A 50 P01 UL 2.0 bar ±10% BE A 20 H A 50 P01 UL

Max tightening


torque: 25 N·m

77

Hydraulic symbol

Electrical symbol

- Certification: UL
- Certification included in EX version

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver - Seal: **HNBR**

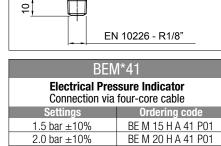
Technical data

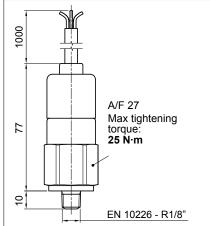
- Max working pressure: 40 bar - Proof pressure: 60 bar

From -25 °C to +80 °C - Working temperature: - Compatibility with fluids: Mineral oils. Synthetic fluids HFB and HFC according to ISO 2943

- Degree of protection: IP65 according to EN 60529

Electrical data


- Electrical connection: EN 175301-803 - Resistive load: 5 A / 14 Vdc 4 A / 30 Vdc


5 A / 125 Vac 4 A / 250 Vac

- CE certification

- Available Atex product: I M1 Ex ia I Ma

II 1GD Ex ia IIC Tx Ex ia IIIC Tx °C X

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Base: Black polyamide

- Contacts: Silver **HNBR** - Seal:

Technical data

- Max working pressure: 40 bar - Proof pressure: 60 bar

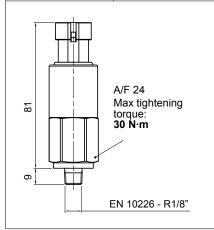
- Working temperature: From -25 °C to +80 °C Mineral oils, Synthetic fluids - Compatibility with fluids:

HFB and HFC according to ISO 2943 - Degree of protection: IP67 according to EN 60529

Electrical data

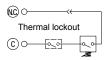
- Electrical connection: Four-core cable - Resistive load: 5 A / 14 Vdc

4 A / 30 Vdc 5 A / 125 Vac 4 A / 250 Vac


CE certification

On request this indicator can be provided with main connectors

in use for wirings.


Settings	Ordering code
2.0 bar ±10%	BE T 20 H F 10 P01
2.5 bar ±10%	BE T 25 H F 10 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Base: Black polyamide

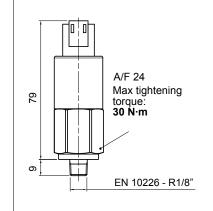
- Contacts: Silver - Seal: **HNBR**

Technical data

- Max working pressure: 10 bar - Proof pressure: 15 bar

From -25 °C to +100 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 - Degree of protection: IP65 according to EN 60529

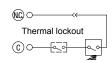
Electrical data


- Electrical connection: AMP Superseal series 1.5 - Resistive load: 0.5 A / 48 Vdc - Thermostat condition: Open up to 30 °C

- CE certification

BET*F30

Electrical Pressure Indicator Deutsch DT-04-2-P


Settings	Ordering code
2.0 bar ±10%	BE T 20 H F 30 P01
2.5 bar +10%	BE T 25 H F 30 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver - Seal: **HNBR**

Technical data

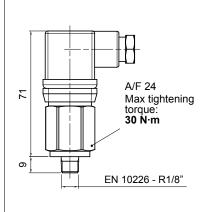
- Max working pressure: 10 bar - Proof pressure: 15 bar

From -25 °C to +100 °C - Working temperature: - Compatibility with fluids: Mineral oils. Synthetic fluids

HFB and HFC according to ISO 2943

- Degree of protection: IP65 according to EN 60529

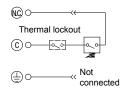
Electrical data


Deutsch DT-04-2-P - Electrical connection: - Resistive load: 0.5 A / 48 Vdc - Thermostat condition: Open up to 30 °C

- CE certification

BET*F50

Electrical Pressure Indicator Connection EN 175301-803


Settings	Ordering code
2.0 bar ±10%	BE T 20 H F 50 P01
2.5 bar ±10%	BE T 25 H F 50 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass Black polyamide - Base: - Contacts: Silver - Seal: **HNBR**

Technical data

- Max working pressure: 10 bar - Proof pressure: 15 bar

- Working temperature: From -25 °C to +100 °C Mineral oils, Synthetic fluids - Compatibility with fluids: HFB and HFC according to ISO 2943

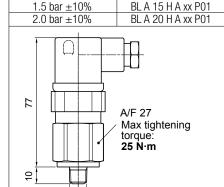
- Degree of protection: IP65 according to EN 60529

Electrical data

EN 175301-803 - Electrical connection: - Resistive load: 0.5 A / 48 Vdc - Thermostat condition: Open up to 30 °C

- CE certification

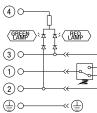
DMETRIC (PRESSURE) INDICATO


Dimensions

BL*51 - BL*52 - BL*53

Electrical/Visual Pressure Indicator Connection: EN 175301-803

- 51: Transparent base with lamps 24 Vdc
- 52: Transparent base with lamps 110 Vdc 53: Transparent base with lamps 230 Vac


Settings Ordering code

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

- Base: Transparent polyamide

- Contacts: Silver - Seal: **HNBR**

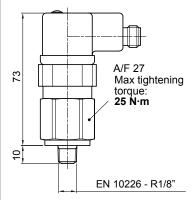
Technical data

- Max working pressure: 40 bar 60 bar - Proof pressure:

From -25 °C to +80 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

- Degree of protection: IP65 according to EN 60529

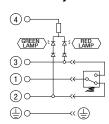
Electrical data


- Electrical connection: EN 175301-803

- Type 51 52 53 - Lamps 24 Vdc 110 Vdc 230 Vac - Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc 1 A / 230 Vac

EN 10226 - R1/8"

Electrical/Visual Pressure Indicator Connection IEC 61076-2-101 D (M12), black base with lamps 24 Vdc


Settings	Ordering code
1.5 bar ±10%	BL A 15 H A 71 P01
2.0 bar ±10%	BL A 20 H A 71 P01

Hydraulic symbol

Electrical symbol

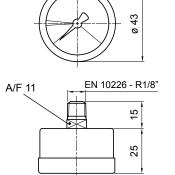
Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver HNBR - Seal:

Technical data

- Max working pressure: 40 bar - Proof pressure: 60 bar

- Working temperature: From -25 °C to +80 °C - Compatibility with fluids: Mineral oils. Synthetic fluids HFB and HFC according to ISO 2943


IP65 according to EN 60529 - Degree of protection:

Electrical data

IEC 61076-2-101 D (M12) - Electrical connection: - Lamps: 24 Vdc (black base) - Resistive load: 0.4 A / 24 Vdc

BVA Hydraulic symbol

Axial Pressure Gauge Settings Ordering code 1.4 bar ±10% BV A 14 P01 BV A 25 P01 2.5 bar ±10%

Dial scale

BV A 14 P01 Red Yellow 1.7 Green 10 har

BV A 25 P01 Yellow Red 3 Green 10 bar

Materials

- Case: Painted Steel - Window: Clear plastic Painted Steel - Dial: Black plastic - Pointer: - Pressure connection:

Bourdon tube Cu-alloy sof t soldered, C type - Pressure element:

Technical data

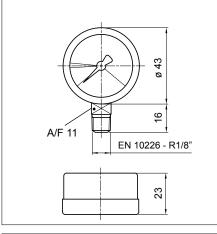
- Compatibility with fluids:

- Max working pressure: Static: 7 bar Fluctuating: 6 bar

> Short time: 10 bar Ambient from -40 °C to +60 °C

- Working temperature: Fluid max +60 °C

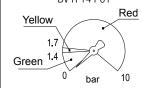
Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 Class 2.5 according to EN 13190

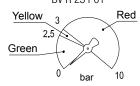

- Accuracy: IP31 according to EN 60529 - Degree of protection:

BAROMETRIC (PRESSURE) INDICATORS

Dimensions

BVR Radial Pressure Gauge


Settings	Ordering code
1.4 bar ±10%	BV R 14 P01
2.5 bar +10%	BV R 25 P01


Hydraulic symbol

Dial scale BV R 14 P01

BV R 25 P01

Materials

Case: Painted Steel
Window: Clear plastic
Dial: Painted Steel
Pointer: Black plastic
Pressure connection: Brass

- Pressure element: Bourdon tube Cu-alloy sof t soldered, C type

Technical data

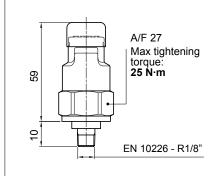
- Max working pressure: Static: 7 bar
Fluctuating: 6 ba

Fluctuating: 6 bar Short time: 10 bar

- Working temperature: Ambient from -40 $^{\circ}$ C to +60 $^{\circ}$ C

Fluid max +60 °C

- Compatibility with fluids: Mineral oils, Synthetic fluids


HFB and HFC according to ISO 2943 Class 2.5 according to EN 13190

Accuracy: Class 2.5 according to EN 1319
 Degree of protection: IP31 according to EN 60529

BVP - BVQ Visual Pressure Indicator

BVP - Automatic reset BVQ - Manual reset

Setting	Ordering code
1.5 bar ±10%	BV P 15 H P01
	BV Q 15 H P01
2.0 bar ±10%	BV P 20 H P01
	BV 0.20 H P01

Hydraulic symbol

Materials

- Body: Brass
- Cover / internal parts: Nylon
- Caps: VMQ
- Seal: HNBR

Technical data

- Reset: BVP - Automatic reset

BVQ - Manual reset

Max working pressure: 10 barProof pressure: 15 bar

Working temperature: From -25 °C to +80 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFB and HFC according to ISO 2943

- Degree of protection: IP45 according to EN 60529

Signals

Absence of pressure (no indicator)

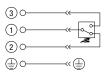
Presence of pressure (green button rises gradually)

Clogged filter element (red button risen)

ERENTIAL PRESSURE INDICATORS

Dimensions

DEA*50 Electrical Differential Pressure Indicator Connection: EN 175301-803


Commodition Etc. 17 CCC 1 CCC	
Settings	Ordering code
1.2 bar ±10%	DE A 12 x A 50 P01
2.0 bar ±10%	DE A 20 x A 50 P01
5.0 bar ±10%	DE A 50 x A 50 P01
$7.0 \text{ bar } \pm 10\%$	DE A 70 x A 50 P01
9.5 bar +10%	DF A 95 x A 50 P01

Hydraulic symbol

Electrical symbol

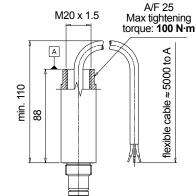
Materials

- Body: - Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

Technical data

- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

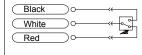
From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943


- Degree protection: IP66 according to EN 60529 IP69K according to ISO 20653

Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 0.2 A / 115 Vdc

DEH*48 Hazardous Area **Electrical Differential Pressure Indicator**


Confidential Ma tillee-cole cable - fitting MZOX1.3	
Settings	Ordering code
2.0 bar ±10%	DE H 20 x A 48 P01
5.0 bar ±10%	DE H 50 x A 48 P01
7.0 bar ±10%	DE H 70 x A 48 P01
M20 × 1.5	A/F 25

Hydraulic symbol

Electrical symbol

Certification / Approvals: ATEX, IECEx, EAC TR CU, INMETRO Certification included as standard

Materials

AISI 316L - Body: - Contacts: Rhodium - Seal: FPM - MFQ

Technical data

420 bar - Max working pressure: - Proof pressure: 630 har - Burst pressure: 1260 bar

 Working temperature: From -60 °C to +125 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 T4 (135 °C) and T6 (85 °C) - Temperature class: - Degree of protection: IP 66/67/68 according to EN 60529

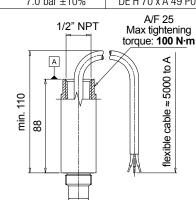
- Connection type: Three-core cable, fitting M20x1.5

SPCO/SPDT (Hermetically sealed - Volt-free contacts) Contact type:

Electrical data

Connection via three-core cable - fitting M20x1.5

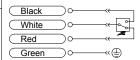
- Resistive Load: 830 mA / 24 Vdc - 180 mA / 110 Vac - Electrical Ratings: Ui = 30 Vdc / Ii = 250 mA / Pi = 1.3 W Available ATEX product: II 1 GD Ex ia IIC T6 Ga -60° C \leq Ta \leq 80 $^{\circ}$ C


Ex ia IIC T4 Ga -60° C \leq Ta \leq 125 $^{\circ}$ C II 2 GD Ex db IIC T6* Gb Ex tb IIIC T85°C* Db $(Tamb := -60^{\circ}C to +70^{\circ}C)^{*} IP66/67$ alternative T/Class and ambients T4, T135°C

 $(Tamb = -60^{\circ}C \text{ to } +120^{\circ}C)$

DEH*49

Hazardous Area Electrical Differential Pressure Indicator Connection via four-core cable - fitting 1/2" NPT


Settings	Ordering code
2.0 bar ±10%	DE H 20 x A 49 P01
5.0 bar ±10%	DE H 50 x A 49 P01
7.0 bar ±10%	DE H 70 x A 49 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: AISI 316L - Contacts: Rhodium FPM - MFQ - Seal:

Technical data

- Max working pressure: 420 bar - Proof pressure: 630 har 1260 bar - Burst pressure:

From -60 °C to +120 °C : ATEX, IECEx, EAC TR CU, INMETRO From -60 °C to +105 °C : UL/CSA - Working temperature:

- Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

- Temperature class: T4 (135 °C) and T6 (85 °C) IP 66/67/68 according to EN 60529 - Degree of protection:

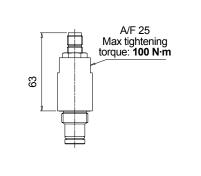
- Connection type:Four-core cable, fitting 1/2" NPT

SPCO/SPDT (Hermetically sealed - Volt-free contacts) Contact type:

Electrical data

Connection via four-core cable - fitting 1/2" NPT Resistive Load: 830 mA / 24 Vdc - 180 mA / 110 Vac - Resistive Load:

- Max voltage 150 Vac/dc - Power


- Available ATEX product: II 1 GD Ex ia IIC T6 Ga -60° C \leq Ta \leq 80 $^{\circ}$ C Ex ia IIC T4 Ga -60° C \leq Ta \leq 125 $^{\circ}$ C

II 2 GD Ex db IIC T6* Gb Ex tb IIIC T85°C* Db $(Tamb : = -60^{\circ}C \text{ to } +70^{\circ}C)^{*} \text{ IP66/67}$ alternative T/Class and ambients T4, T135°C

 $(Tamb = -60^{\circ}C \text{ to } +120^{\circ}C)$

DEH*70 Hazardous Area Electrical Differential Pressure Indicator Connection IEC 61076-2-101 D (M12)

Settings	Ordering code
2.0 bar ±10%	DE H 20 x A 70 P01
5.0 bar ±10%	DE H 50 x A 70 P01
7.0 bar ±10%	DE H 70 x A 70 P01

Hvdraulic symbol

Electrical symbol

Materials

AISI 316L with internal engineered resin switch - Body:

Rhodium

Contacts: FPM - MFQ Seal:

Technical data Max working pressure: Proof pressure: 420 bar 630 bar Burst pressure: 1260 bar

Working temperature: Compatibility with fluids: From -60 °C to +80 °C Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

Temperature class:

IP 66/67 according to EN 60529 Degree of protection:

Connection type:IEC 61076-2-101 D (M12)

Contact type: SPCO/SPDT (Hermetically sealed - Volt-free contacts)

Electrical data Connection IEC 61076-2-101 D (M12)

830 mA / 24 Vdc - 180 mA / 110 Vdc Resistive Load:

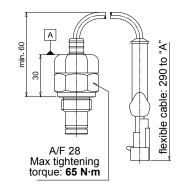
Ui = 30 Vdc Electrical Ratings: li = 250 mA

Pi = 1.3 W

Available ATEX product:

FI = 1.3 W II 1 GD Ex ia IIC T6 Ga -60° C \leq Ta \leq 80°C Ex ia IIC T4 Ga -60° C \leq Ta \leq 125°C II 2 GD Ex db IIC T6* Gb Ex tb IIIC T85°C* Db (Tamb : = -60° C to $+70^{\circ}$ C)* IP66/67 * alternative T/Class and ambients T4, T135°C

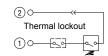
 $(Tamb = -60^{\circ}C \text{ to } +120^{\circ}C)$


Certification / Approvals: ATEX, IECEx, EAC TR CU, INMETRO

Certification included as standard

DEM*F10

Electrical Differential Pressure Indicator Connection: AMP Superseal series 1.5


Settings	Ordering code
1.2 bar ±10%	DE M 12 x F 10 P01
2.0 bar ±10%	DE M 20 x F 10 P01
5.0 bar ±10%	DE M 50 x F 10 P01
7.0 bar ±10%	DE M 70 x F 10 P01
9.5 bar ±10%	DE M 95 x F 10 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

Technical data

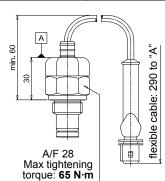
- Max working pressure: 420 bar 630 bar - Proof pressure: - Burst pressure: 1260 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

- Degree protection: IP66 according to EN 60529

Electrical data

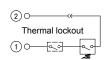
- Electrical connection: AMP Superseal series 1.5


- Resistive load: 0.2 A / 115 Vdc

- Switching type: Normally open contacts (NC on request) Normally open up to 30 °C (option "F") - Thermal lockout:

DEM*F20

Electrical Differential Pressure Indicator AMP Time junior


Settings	Ordering code
1.2 bar ±10%	DE M 12 x F 20 P01
2.0 bar ±10%	DE M 20 x F 20 P01
5.0 bar ±10%	DE M 50 x F 20 P01
7.0 bar ±10%	DE M 70 x F 20 P01
9.5 bar ±10%	DE M 95 x F 20 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

- Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

Technical data

420 bar - Max working pressure: 630 bar - Proof pressure: Burst pressure: 1260 bar

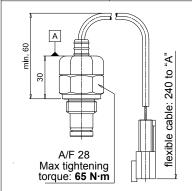
- Working temperature: From -25 °C to +110 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 IP66 according to EN 60529

- Degree protection:

Electrical data

AMP Time junior - Electrical connection: - Resistive load: 0.2 A / 115 Vdc

Switching type: Normally open contacts (NC on request) Normally open up to 30 °C (option "F") - Thermal lockout:



DIFFERENTIAL PRESSURE INDICATORS

Dimensions

DEM*F30 Electrical Differential Pressure Indicator Deutsch DT-04-2-P

	-
Settings	Ordering code
1.2 bar ±10%	DE M 12 x F 30 P01
2.0 bar ±10%	DE M 20 x F 30 P01
5.0 bar ±10%	DE M 50 x F 30 P01
7.0 bar ±10%	DE M 70 x F 30 P01
9.5 bar ±10%	DE M 95 x F 30 P01

Hydraulic symbol

Electrical symbol

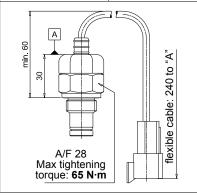
Materials

Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: HNBR - FPM

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

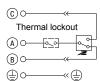
Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943
 IP66 according to EN 60529


Electrical data

Electrical connection: Deutsch DT-04-2-P
 Resistive load: 0.2 A / 115 Vdc

Switching type: Normally open contacts (NC on request)
 Thermal lockout: Normally open up to 30 °C (option "F")

DEM*F35 Electrical Differential Pressure Indicator Deutsch DT-04-3-P


Douton Di oi oi	
Settings	Ordering code
1.2 bar ±10%	DE M 12 x F 35 P01
2.0 bar ±10%	DE M 20 x F 35 P01
5.0 bar ±10%	DE M 50 x F 35 P01
7.0 bar ±10%	DE M 70 x F 35 P01
9.5 bar ±10%	DE M 95 x F 35 P01

Hydraulic symbol

Electrical symbol

Materials

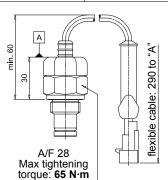
Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: HNBR - FPM

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943
 IP66 according to EN 60529

Electrical data

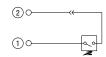

- Electrical connection: Deutsch DT-04-3-P
- Resistive load: 0.2 A / 115 Vdc
- Switching type: SPDT contact

- Thermal lockout: Normally open up to 30 °C (option "F")

DEM*A10

Electrical Differential Pressure Indicator Connection: AMP Superseal series 1.5

Settings	Ordering code
1.2 bar ±10%	DE M 12 x A 10 P01
2.0 bar ±10%	DE M 20 x A 10 P01
5.0 bar ±10%	DE M 50 x A 10 P01
7.0 bar ±10%	DE M 70 x A 10 P01
9.5 bar ±10%	DE M 95 x A 10 P01



734

Hydraulic symbol

Electrical symbol

Materials

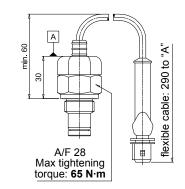
- Body: Brass
- Base: Black polyamide
- Contacts: Silver
- Seal: HNBR - FPM

Technical data

Max working pressure: 420 bar
Proof pressure: 630 bar
Burst pressure: 1260 bar
Working temperature: From -25

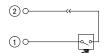
Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943
 IP66 according to EN 60529

Electrical data


Electrical connection: AMP Superseal series 1.5
 Resistive load: 0.2 A / 115 Vdc

- Switching type: Normally open contacts (NC on request)

DEM*A20 Electrical Differential Pressure Indicator AMP Time junior


Settings	Ordering code
1.2 bar ±10%	DE M 12 x A 20 P01
2.0 bar ±10%	DE M 20 x A 20 P01
5.0 bar ±10%	DE M 50 x A 20 P01
7.0 bar ±10%	DE M 70 x A 20 P01
9.5 bar ±10%	DE M 95 x A 20 P01

Hydraulic symbol

Electrical symbol

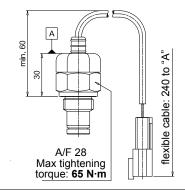
Materials

Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: HNBR - FPM

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

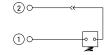
Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943
 IP66 according to EN 60529


Electrical data

- Electrical connection: AMP Time junior - Resistive load: 0.2 A / 115 Vdc

- Switching type: Normally open contacts (NC on request)

DEM*A30 Electrical Differential Pressure Indicator Deutsch DT-04-2-P Settings Ordering code


Settings	Ordering code
1.2 bar ±10%	DE M 12 x A 30 P01
2.0 bar ±10%	DE M 20 x A 30 P01
5.0 bar ±10%	DE M 50 x A 30 P01
7.0 bar ±10%	DE M 70 x A 30 P01
9.5 bar ±10%	DE M 95 x A 30 P01

Hydraulic symbol

Electrical symbol

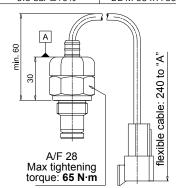
Materials

Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: HNBR - FPM

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

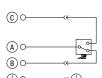
Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943
 IP66 according to EN 60529


Electrical data

Electrical connection: Deutsch DT-04-2-P
 Resistive load: 0.2 A / 115 Vdc

- Switching type: Normally open contacts (NC on request)

DEM*A35 Electrical Differential Pressure Indicator Deutsch DT-04-3-P


200.0020	
Settings	Ordering code
1.2 bar ±10%	DE M 12 x A 35 P01
2.0 bar ±10%	DE M 20 x A 35 P01
5.0 bar ±10%	DE M 50 x A 35 P01
7.0 bar ±10%	DE M 70 x A 35 P01
9.5 bar ±10%	DE M 95 x A 35 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass
- Base: Black polyamide
- Contacts: Silver
- Seal: HNBR - FPM

Technical data

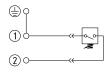
- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar - Working temperature: From -25

Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943
 IP66 according to EN 60529

Electrical data

Electrical connection: Deutsch DT-04-3-P
 Resistive load: 0.2 A / 115 Vdc
 Switching type: SPDT contact

ERENTIAL PRESSURE INDICATORS


Dimensions

DES*10 **Electrical Differential Pressure Indicator** AMP Superseal series 1.5 Ordering code 1.2 bar ±10% DE S 12 H A 10 P01 2.5 bar ±10% DE S 25 H A 10 P01 4.0 bar ±10% DE S 40 H A 10 P01 39 A/F 19 Max tightening torque: 20 N·m

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Internal parts: Brass - Polyamide

- Contacts: Silver - Seal: **HNBR**

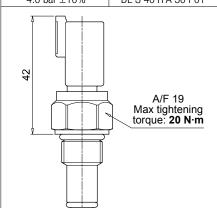
Technical data

- Max working pressure: 16 bar - Proof pressure: 24 bar - Burst pressure: 48 har

- Working temperature: From -25 °C to +110 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

IP67 according to EN 60529 - Degree protection:

Electrical data


- Electrical connection: AMP Superseal series 1.5

0.2 A / 24 Vdc - Resistive load:

- Switching type: Normally open contacts (NC on request)

DES*30 Electrical Differential Pressure Indicator Deutsch DT-04-2-P

Settings	Ordering code
1.2 bar ±10%	DE S 12 H A 30 P01
2.5 bar ±10%	DE S 25 H A 30 P01
4.0 bar ±10%	DE S 40 H A 30 P01

Hydraulic symbol

Electrical symbol

Materials

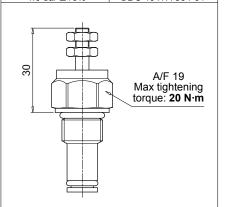
- Body: Brass - Internal parts: Brass - Polyamide - Contacts: Silver - Seal: **HNBR**

Technical data

- Max working pressure: 16 bar - Proof pressure: 24 bar - Burst pressure: 48 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 - Degree protection:

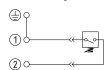
IP67 according to EN 60529


Electrical data

- Electrical connection: Deutsch DT-04-2-P - Resistive load: 0.2 A / 24 Vdc

- Switching type: Normally open contacts (NC on request)

DES*80 Electrical Differential Pressure Indicator Stud #10-32 UNF


Oldu # 10-32 ONI	
Settings	Ordering code
1.2 bar ±10%	DE S 12 H A 80 P01
2.5 bar ±10%	DE S 25 H A 80 P01
4 0 har +10%	DF S 40 H A 80 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

Brass - Polyamide - Internal parts:

- Contacts: Silver **HNBR** - Seal:

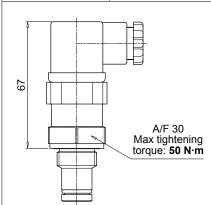
Technical data

- Max working pressure: 16 bar - Proof pressure: 24 bar - Burst pressure: 48 bar

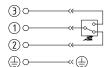
From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 - Degree protection: IP67 according to EN 60529

Electrical data

- Electrical connection: Stud #10-32 UNF - Resistive load: 0.2 A / 24 Vdc


- Switching type: Normally open contacts (NC on request)

DEU*50 UL Electrical Differential Pressure Indicator Connection EN 175301-803


Settings	Ordering code
2.0 bar ±10%	DE U 20 V A 50 P01 UL
5.0 bar ±10%	DE U 50 V A 50 P01 UL
7.0 bar ±10%	DE U 70 V A 50 P01 UL

Hydraulic symbol

Electrical symbol

- Certification: UL
- Certification included as standard

Materials

Body: BrassBase: Black PolyamideContacts: Silver

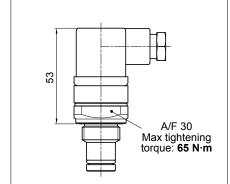
- Contacts: Slive - Seal: FPM

Technical data

Max working pressure: 210 barProof pressure: 220 barBurst pressure: 880 bar

Working temperature:
 Compatibility with fluids:
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943

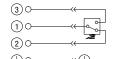
- Degree protection: IP65 according to EN 60529


Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 3 A / 30 Vdc

3 A / 125 Vac 3 (3) A / 250 Vac

DEX*50 Electrical Differential Pressure Indicator Connection: EN 175301-803 Settings Ordering code


Settings	Ordering code
1.2 bar ±10%	DE X 12 x A 50 P01
2.0 bar ±10%	DE X 20 x A 50 P01
5.0 bar ±10%	DE X 50 x A 50 P01
7.0 bar ±10%	DE X 70 x A 50 P01
9.5 bar ±10%	DE X 95 x A 50 P01

Hydraulic symbol

Electrical symbol

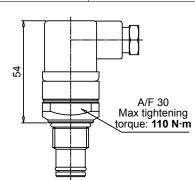
Materials

Body: AISI 316L
Base: Black polyamide
Contacts: Silver
Seal: HNBR - MFQ

Technical data

Max working pressure:
 Proof pressure:
 Burst pressure:
 Working temperature:

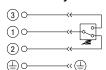
420 bar
630 bar
1260 bar
From -25 °C to +110 °C


- Compatibility with fluids: Mineral oils, Synthetic fluids
HFB and HFC according to ISO 2943
- Degree protection: IP66 according to EN 60529
IP69K according to ISO 20653

Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 0.2 A / 115 Vdc

DEZ*50 **Electrical Differential Pressure Indicator**Connection: EN 175301-803


Settings	Ordering code
1.2 bar ±10%	DE Z 12 x A 50 P01
2.0 bar ±10%	DE Z 20 x A 50 P01
5.0 bar ±10%	DE Z 50 x A 50 P01
7.0 bar ±10%	DE Z 70 x A 50 P01
9.5 bar ±10%	DE Z 95 x A 50 P01

Hydraulic symbol

Electrical symbol

Materials

Body: AISI 316L
Base: Black polyamide
Contacts: Silver
Seal: HNBR - MFQ

Technical data

Max working pressure: 700 bar
 Proof pressure: 1050 bar
 Burst pressure: 2100 bar
 Working temperature: From -25 °C to +110 °C

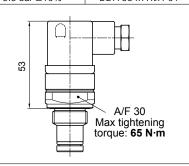
Compatibility with fluids: Mineral oils, Synthetic fluids
 HFA, HFB, HFC according to ISO 2943
 Degree protection: IP66 according to EN 60529
 IP69K according to ISO 20653

Electrical data

Electrical connection: EN 175301-803
 Resistive load: 0.2 A / 115 Vdc

ERENTIAL PRESSURE INDICATORS

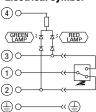
Dimensions


DLA*51 - DLA*52

Electrical/Visual Differential Pressure Indicator

Connection: EN 175301-803

- 51: Transparent base with lamps 24 Vdc
- 52: Transparent base with lamps 110 Vdc


Settings	Ordering code
1.2 bar ±10%	DL A 12 x A xx P01
2.0 bar ±10%	DL A 20 x A xx P01
5.0 bar ±10%	DL A 50 x A xx P01
7.0 bar ±10%	DL A 70 x A xx P01
9.5 bar +10%	DL A 95 x A xx P01

Hydraulic symbol

Electrical symbol

Materials

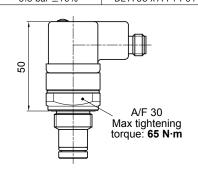
- Body: Brass - Base: Transparent polyamide

- Contacts: Silver HNBR - FPM - Seal:

Technical data

- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

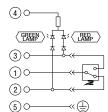
From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943


- Degree protection: IP66 according to EN 60529 IP69K according to ISO 20653

Electrical data

EN 175301-803 - Electrical connection: - Type 51 - Lamps 24 Vdc 110 Vdc - Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc

Electrical/Visual Differential pressure indicator Connection IEC 61076-2-101 D (M12), black base with lamps 24 Vdc


Settings	Ordering code
1.2 bar ±10%	DL A 12 x A 71 P01
2.0 bar ±10%	DL A 20 x A 71 P01
5.0 bar ±10%	DL A 50 x A 71 P01
7.0 bar ±10%	DL A 70 x A 71 P01
9.5 bar +10%	DLA 95 x A 71 P01

Hydraulic symbol

Electrical symbol

Materials

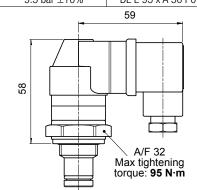
- Body: Brass - Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

Technical data

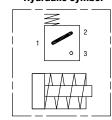
- Max working pressure: 420 bar - Proof pressure: 630 bar 1260 bar - Burst pressure:

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 IP65 according to EN 60529 - Degree protection:

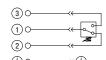
IP69K according to ISO 20653


Electrical data

- Electrical connection: IEC 61076-2-101 D (M12) - Lamps 24 Vdc (black base) - Resistive load: 0.4 A / 24 Vdc


DLE*A50

Electrical/Visual Differential Pressure Indicator Without term. Connections: EN 175301-803


Settings	Ordering code	
1.2 bar ±10%	DL E 12 x A 50 P01	
2.0 bar ±10% DL E 20 x A 50 P0		
5.0 bar ±10% DL E 50 x A 50 P0		
7.0 bar ±10% DL E 70 x A 50 P01		
9.5 har +10%	DL F 95 x A 50 P01	

Hydraulic symbol

Electrical symbol

Materials

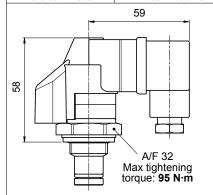
- Body: Brass - Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

Technical data

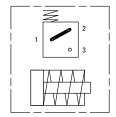
420 bar - Max working pressure: 630 bar - Proof pressure: - Burst pressure: 1260 bar

- Working temperature: From -25 °C to +110 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 - Degree protection: IP65 according to EN 60529

Electrical data


- Electrical connections: EN 175301-803 5 A / 250 Vac - Resistive load: - Available the connector with lamps

Clogging Indicators



DLE*F50 Electrical/Visual Differential Pressure Indicator With term. Connections: EN 175301-803

With term. Connections. Liv 175501-005		
Settings	Ordering code	
1.2 bar ±10%	DL E 12 x F 50 P01	
2.0 bar ±10%	DL E 20 x F 50 P01	
5.0 bar ±10% DL E 50 x F 50 PC		
7.0 bar ±10%	DL E 70 x F 50 P01	
9.5 bar ±10%	DL E 95 x F 50 P01	

Hydraulic symbol

Electrical symbol

Materials

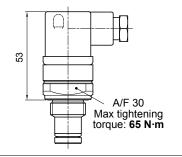
Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: HNBR - FPM

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943
 IP65 according to EN 60529

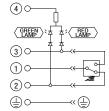
Electrical data


- Electrical connections: EN 175301-803
- Resistive load: 5 A / 250 Vac
- Thermal lockout setting: +30 °C

DLX*51 - DLX*52

Electrical/Visual Differential Pressure Indicator Connection: EN 175301-803

51: Transparent base with lamps 24 Vdc **52**: Transparent base with lamps 110 Vdc


Settings	Ordering code
1.2 bar ±10%	DL X 12 x A 5x P01
2.0 bar ±10%	DL X 20 x A 5x P01
5.0 bar ±10%	DL X 50 x A 5x P01
7.0 bar ±10%	DL X 70 x A 5x P01
9.5 har +10%	DL X 95 x A 5x P01

Hydraulic symbol

Electrical symbol

Materials

Body: AISI 316L
Base: Transparent polyamide
Contacts: Silver
Seal: HNBR - MFQ

Technical data

- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar - Working temperature: From -25 °C to +110 °C

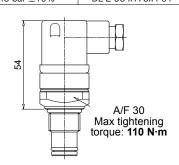
- Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943
- Degree protection: IP66 according to EN 60529

IP69K according to ISO 20653

Electrical data

Electrical data
- Electrical connection: EN 175301-803
- Type 51 52
- Lamps 24 Vdc 110 Vdc
- Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc

DLZ*51 - DLZ*52


Electrical/Visual Differential Pressure Indicator

Connection: EN 175301-803

51: Transparent base with lamps 24 Vdc

52: Transparent base with lamps 110 Vdc

Settings	Ordering code
1.2 bar ±10%	DL Z 12 x A 5x P01
2.0 bar ±10%	DL Z 20 x A 5x P01
5.0 bar ±10%	DL Z 50 x A 5x P01
7.0 bar ±10%	DL Z 70 x A 5x P01
9.5 har +10%	DL 7 95 x A 5x P01

Hydraulic symbol

Electrical symbol

Materials

- Body: AISI 316L

Base: Transparent polyamideContacts: Silver

- Seal: HNBR - MFQ

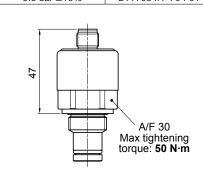
Technical data

Max working pressure: 700 bar
Proof pressure: 1050 bar
Burst pressure: 2100 bar

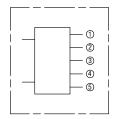
Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943
 Degree protection: IP66 according to EN 60529 IP69K according to ISO 20653

Electrical data

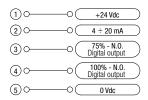
Electrical connection: EN 175301-803
 Type 51 52
 Lamps 24 Vdc 110 Vdc
 Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc



ERENTIAL PRESSURE INDICATORS


Dimensions

DTA*F70 **Electronic Differential Pressure Indicator** Connection: IEC 61076-2-101 D (M12)


Settings	Ordering code
1.2 bar ±10%	DT A 12 x F 70 P01
2.0 bar ±10%	DT A 20 x F 70 P01
5.0 bar ±10%	DT A 50 x F 70 P01
7.0 bar ±10%	DT A 70 x F 70 P01
9.5 bar +10%	DT A 95 x F 70 P01

Hydraulic symbol

Electrical symbol

Materials

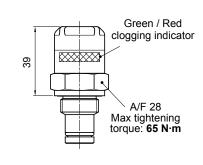
- Body: Brass

Brass - Polyamide - Internal parts: - Contacts: Silver - Seal: HNBR - FPM

Technical data

- Max working pressure: 420 bar 630 bar - Proof pressure: 1260 bar - Burst pressure:

- Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 - Degree protection: IP67 according to EN 60529


Electrical data

- Electrical connection: IEC 61076-2-101 D (M12)

- Power supply: 24 Vdc - Analogue output: From 4 to 20 mA

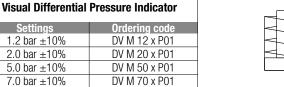
- Thermal lockout: 30 °C (all output signals stalled up to 30 °C)

DVA **Visual Differential Pressure Indicator** Ordering code Settings 1.2 bar ±10% DV A 12 x P01 2.0 bar ±10% DV A 20 x P01 5.0 bar ±10% DV A 50 x P01 7.0 bar ±10% DV A 70 x P01 9.5 bar ±10% DV A 95 x P01

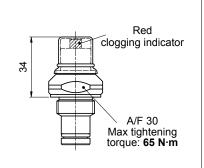
Hydraulic symbol

Materials

- Body: Brass - Internal parts: Brass - Polyamide HNBR - FPM - Seal:


Technical data

Automatic reset - Reset: - Max working pressure: 420 bar 630 bar - Proof pressure: - Burst pressure: 1260 bar


From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

IP65 according to EN 60529 - Degree protection:

DVM **Hydraulic symbol**

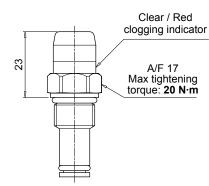
DV M 95 x P01

Materials

- Body: Brass

Brass - Polyamide - Internal parts: HNBR - FPM - Seal:

Technical data


Manual reset - Reset: - Max working pressure: 420 bar 630 bar - Proof pressure: - Burst pressure: 1260 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

- Degree protection: IP65 according to EN 60529

9.5 bar ±10%

DVS Visual Differential Pressure Indicator Settings Ordering code 1.2 bar ±10% DV S 12 H P01 2.5 bar ±10% DV S 25 H P01 4.0 bar ±10% DV S 40 H P01

Hydraulic symbol

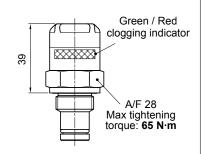
Materials

- Body: Brass

- Internal parts: Brass - Polyamide

- Seal: HNBR

Technical data


Reset: Automatic reset
Max working pressure: 16 bar
Proof pressure: 24 bar
Burst pressure: 48 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFB and HFC according to ISO 2943
- Degree protection: IP67 according to EN 60529

Visual Differential Pressure Indicator

Settings	Ordering code
1.2 bar ±10%	DV X 12 x P01
2.0 bar ±10%	DV X 20 x P01
5.0 bar ±10%	DV X 50 x P01
7.0 bar ±10%	DV X 70 x P01
9.5 bar ±10%	DV X 95 x P01
9.5 bar ±10%	DV X 95 x P01

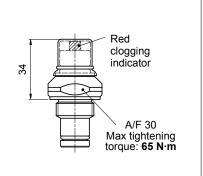
Hydraulic symbol

Materials

Body: AISI 316L
Internal parts: AISI 316L - Polyamide
Seal: HNBR - MFQ

Technical data

- Reset: Automatic reset
- Max working pressure: 420 bar
- Proof pressure: 630 bar
- Burst pressure: 1260 bar


Working temperature:
 Compatibility with fluids:
 Mineral oils, Synthetic fluids
 HFB and HFC according to ISO 2943

- Degree protection: IP65 according to EN 60529

DVY

Settings	Ordering code
1.2 bar ±10%	DV Y 12 x P01
2.0 bar ±10%	DV Y 20 x P01
5.0 bar ±10%	DV Y 50 x P01
7.0 bar ±10%	DV Y 70 x P01
9.5 bar ±10%	DV Y 95 x P01

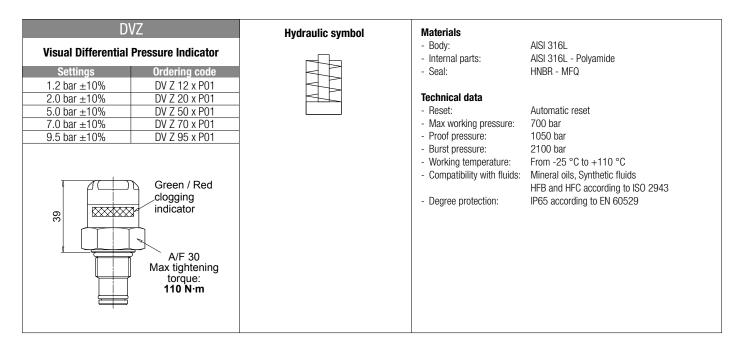
Visual Differential Pressure Indicator

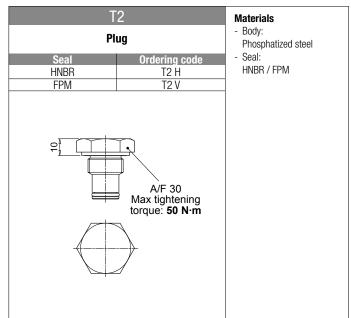
Hydraulic symbol

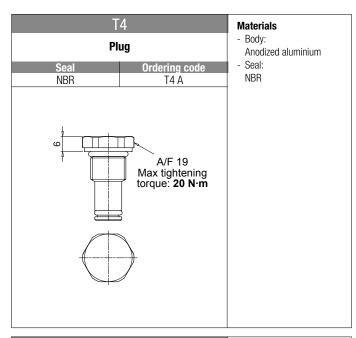
Materials

- Body: AISI 316L - Internal parts: AISI 316L - Polyamide - Seal: HNBR - MFQ

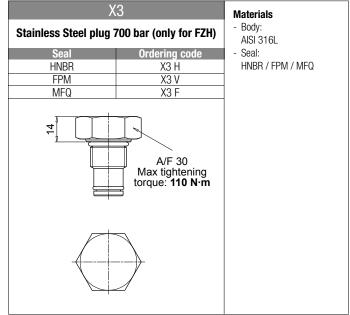
Technical data


- Reset: Manual reset
- Max working pressure: 420 bar
- Proof pressure: 630 bar
- Burst pressure: 1260 bar


 Working temperature:
 Compatibility with fluids:
 Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943


- Degree protection: IP65 according to EN 60529

DIFFERENTIAL PRESSURE INDICATORS


Dimensions

Х	2	Materials
Stainless Stee	el plug 420 bar	- Body: AISI 316L
Seal HNBR FPM MFQ	Ordering code X2 H X2 V X2 F	- Seal: HNBR / FPM / MFQ
A/F 30 Max tightening torque: 50 N·m		

All data, details and words contained in this publication are provided for use by technically qualified personnel at their discretion, without warranty of any kind.

MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and/or commercial reasons.

For updated information please visit our website: www.mpfiltri.com

The colors and the pictures of the products are purely indicative.

Any reproduction, partial or total, of this document is strictly forbidden.

All rights are strictly reserved

WORLDWIDE NETWORK

CANADA ♦ CHINA ♦ FRANCE ♦ GERMANY ♦ INDIA ♦ SINGAPORE UNITED ARAB EMIRATES ♦ UNITED KINGDOM ♦ USA

PASSION TO PERFORM

